

STEM tech review
Accessibility of solutions for interacting
with content in science, technology,
engineering, and mathematics

2

2025 – Swedish Agency for Accessible Media

Diarienummer: MTM 2024/213

STEM tech review: accessibility of solutions for interacting with content in
science, technology, engineering, and mathematics

Authors:
Tim Arborealis Lötberg, STEM specialist, MTM, editor and project manager
Lisa Hartun Bennedsen, Special pedagogical consultant, Nota
Evelina Frischenfeldt Bååth, Special teacher with specialisation in mathematical
development, graduate from Gothenburg University
Anders Eklund, Project manager, SPSM
Marthe Gjelstad, STEM specialist, NB
Lars Henrik Johansen, Senior adviser, Statped
J. M. Kvile, Math teacher, Statped
Sami Määttä, Planner, Celia
Björn Westling, Braille specialist, MTM

3

Introduction and a short
summary
This report is the result of a joint effort by the Nordic
agencies for accessibility within the fields of media,
literature, and education.

The agencies have an ongoing collaboration in development, following a vision
of a complete digital environment in which STEM content is compatible and
fully accessible. The STEM tech review project is one example of this
collaboration. The agencies are aiming to develop the production and
adaptation of teaching materials for all our target groups, including users of
all ages, studying STEM on all levels. Target groups include persons with
blindness, low vision, dyslexia, neurological disabilities, and motoric disabilities.

The report is presenting:

• Information on technical solutions that are working for all target
groups, with an emphasis on persons with visual impairment or
blindness.

• Areas in need of further study and research.
• Suggestions for development projects.

Among interesting results are the needs for the agencies to monitor and to
contribute to evolving technologies and standards. The needs are pointed out
for flexible solutions for writing math accessibly, where the user can choose in
which way to write, and to make digital STEM content interactive.

Ten areas of interest are covered: Screen readers, Reading systems, Writing
math, Calculators and graph programs, Multiline tactile displays, Graphs and
diagrams, Programming interfaces, Learning platforms, Conversion tools, and
Large Language Models.

Another outcome of the project is up-to-date user recommendations on
hardware and software which make STEM content accessible.

The project has had a short timeline but has been very successful due to
excellent competence and willingness to contribute by all partners.

Björn Westling, project owner

4

Table of contents
1 Background and scope ... 10

1.1 Background ... 10

1.2 Glossary .. 11

1.3 Acknowledgements .. 12

2 Screen readers ... 13

2.1 Introduction .. 13

2.2 Screen Readers and Mathematics .. 13

2.2.1 MathJax ... 13

2.2.2 MathCAT.. 13

2.3 Screen Reader Testing .. 14

2.3.1 JAWS .. 14

2.3.2 NVDA ... 14

2.3.3 VoiceOver .. 14

2.3.4 TalkBack .. 15

2.3.5 Narrator ... 15

2.3.6 Orca ... 15

2.3.7 Dolphin Supernova and ScreenReader 15

2.4 Conclusions ... 16

3 Reading systems’ support for MathML ... 17

3.1 Background ... 17

3.2 Research question .. 17

3.2.1 Why focus only on visual rendering? 17

3.3 Research design .. 18

3.3.1 Chosen test e-book .. 18

3.3.2 Criteria for defining support for visual rendering of MathML .. 18

3.3.3 Tested reading systems ... 20

3.3.4 Limitations ... 20

3.4 Results .. 20

3.4.1 Thorium Reader ... 20

3.4.2 Calibre e-reader ... 21

3.4.3 Adobe Digital Editions ... 21

3.4.4 Dolphin EasyReader ... 21

3.4.5 Colibrio Reader .. 22

3.4.6 Web reader ... 22

5

3.4.7 Mobile app .. 22

3.4.8 Pratsam Reader ... 22

3.4.9 Lithium: EPUB reader .. 23

3.4.10 Cantook by Aldiko .. 23

3.4.11 Kobo Books .. 23

3.4.12 Legimus ... 23

3.4.13 RedShelf .. 23

3.4.14 Nota Bibliotek 2.0 .. 24

3.4.15 Book Share .. 24

3.4.16 Play Books ... 24

3.4.17 Clusive ... 24

3.5 Conclusions ... 25

3.5.1 Best support when using MathJax ... 25

3.5.2 Native MathML support is rare .. 25

3.5.3 Partial support ... 26

3.5.4 No support is the most common in mobile apps 26

3.6 Discussion ... 26

3.6.1 Next steps .. 26

3.6.2 In-depth discussion .. 27

3.7 Further research ... 27

3.7.1 Note on the review .. 28

4 Writing Math ... 29

4.1 Introduction .. 29

4.2 Blind Students in Denmark ... 29

4.2.1 Challenge ... 30

4.2.2 Primary School: WordMat, GeoGebra, MatematikFessor 30

4.2.3 Biggest Challenge: VLE:s in Primary School 31

4.2.4 Conclusion: Writing Math in Primary School 31

4.3 Upper Secondary School Tools ... 31

4.3.1 TI-Nspire, Maple, Math Platforms, and CAS Tools 31

4.3.2 Maple Is Clearly Better for Visually Impaired Students. 32

4.3.3 Comparison between Maple and TI-Nspire 32

4.4 Higher Education .. 33

4.4.1 How Snapchat Can Help Solve a Math Equation 33

4.4.2 Request from BVI Danish High School Students 34

4.5 Authoring Math Accessibly: Overleaf and Alternatives 34

6

4.5.1 Overleaf ... 35

4.5.2 Alternatives ... 36

4.6 Mobile math authoring tools and Audio-Based Math Input systems .. 37

4.6.1 Audio-Based Math Entry Systems .. 37

4.7 Writing Math as a Blind Student: An International Perspective 37

4.7.1 Text-Based Input ... 37

4.7.2 Accessible Digital Tools and Math Editors 38

4.7.3 Braille Displays and Math Braille ... 38

4.7.4 Audio-Based Math Access ... 38

4.7.5 Human Support as Infrastructure .. 39

4.7.6 Common Global Barriers ... 39

4.7.7 Braille notetakers .. 40

4.7.8 Math Solver ... 40

4.7.9 Online platforms accessible ... 41

4.7.10 Challenges ... 41

4.7.11 Practical Use in Education ... 42

4.8 Conclusions ... 42

5 Calculators and graph programs ... 44

5.1 Introduction .. 44

5.2 GeoGebra ... 44

5.2.1 GeoGebra Graphing ... 44

5.2.2 GeoGebra CAS ... 45

5.3 Desmos ... 46

5.3.1 Desmos app ... 46

5.4 SenseMath .. 47

5.5 Microsoft Excel ... 48

5.6 Maple ... 48

5.7 Isabelle Proof Assistant ... 48

5.8 Conclusion .. 48

6 Multiline tactile displays ... 50

6.1 Introduction .. 50

6.2 Overall comparison ... 50

6.3 Cadence .. 51

6.4 Canute 360 ... 52

6.5 Dot Pad ... 52

6.6 Graphiti ... 53

7

6.7 Monarch ... 53

6.8 Tactonom Pro ... 54

6.9 Future development ... 54

6.10 Conclusions ... 56

7 Graphs and diagrams .. 57

7.1 Image descriptions .. 57

7.1.1 Poet ... 57

7.1.2 Seeing AI .. 57

7.2 Haptics .. 57

7.2.1 Multimodal Digital Graphics on Touchscreens 57

7.3 Sonification ... 58

7.3.1 Astronify .. 58

7.3.2 SenseMath .. 58

7.4 Tactile images ... 58

7.4.1 Blind SVG ... 58

7.4.2 Dimensions .. 58

7.4.3 ProBlind ... 58

7.4.4 Tactile Vega-Lite .. 59

7.5 Other tools and projects ... 59

7.5.1 Chartability .. 59

7.5.2 Data Navigator .. 59

7.5.3 Highcharts ... 59

7.5.4 Inclusio .. 59

7.6 Conclusions ... 59

8 Programming interfaces ... 61

8.1 General considerations ... 61

8.1.1 Definitions ... 61

8.1.2 Previous work .. 61

8.2 Evaluation criteria ... 61

8.2.1 Installation and setup .. 61

8.2.2 Basic navigation ... 62

8.2.3 Code editing .. 62

8.2.4 Debugging and Error Messages ... 62

8.2.5 Autocomplete and Suggestions ... 62

8.2.6 Accessibility Settings and Customisation 62

8.2.7 Terminal/Console Access ... 63

8

8.2.8 Documentation and Community Support 63

8.3 Specific programming interfaces .. 63

8.3.1 Jupyter Note-book ... 63

8.3.2 Notepad++ ... 63

8.3.3 PyCharm .. 64

8.3.4 Scratch ... 64

8.3.5 Visual Studio Code ... 64

8.3.6 Other editors ... 65

8.4 Conclusions ... 65

9 Learning platforms .. 66

9.1 Introduction to learning platforms ... 66

9.2 Background and previous studies ... 66

9.3 Research questions ... 68

9.4 Findings .. 68

10 Conversion tools .. 69

10.1 MathKicker ... 69

10.2 MathPix .. 69

10.3 Mistral .. 69

10.4 Morf .. 69

10.5 Pandoc .. 69

10.6 WordToEPUB .. 70

10.7 Conclusions ... 70

11 Large Language Models .. 71

12 Overall conclusions ... 73

12.1 Suggestions for further study ... 73

12.1.1 E-book testing .. 73

12.1.2 Use of tools in education ... 73

12.1.3 Evaluate learning management systems 74

12.1.4 Further testing of calculators and graph programs 74

12.1.5 Test multiline tactile displays .. 74

12.1.6 Monitor traditional tactile image techniques 74

12.1.7 Further studies of programming interfaces 75

12.1.8 Evaluate conversion tools .. 75

12.1.9 Investigate Large Language Models ... 75

12.2 Suggested development projects ... 75

12.2.1 MathCAT translations .. 75

9

12.2.2 Future-proofing MathCAT ... 76

12.2.3 Advocate for native MathML support in readers 76

12.2.4 Advocate for use of MathML ... 76

12.2.5 Develop support for writing math into e-books 76

12.2.6 Develop accessible and localised graphing tool 77

12.2.7 Develop support for scripted SVG in e-books 77

12.2.8 Develop standards for tactile graphics 77

13 References .. 78

10

1. Background and scope
By Tim Arborealis Lötberg

1.1 Background
Science, Technology, Engineering and Mathematics (STEM) often relies on
complex content such as mathematics, chemical formulae, graphs, diagrams
and computer code. This can pose significant challenges to people with reading
disabilities when engaging with the field. These challenges are prevalent
throughout school (McCabe, 2023) and linger throughout higher education,
demotivating many from pursuing careers in STEM.

New technologies are emerging which open up for greater accessibility in
STEM. Additionally, an important incentive for publishers to produce accessible
STEM books is the European Accessibility Act (European Comission, 2025),
which includes e-books in its scope. Using current standards and applying
principles of universal design, STEM books could be born accessible to a much
greater degree. This, in turn, would lessen the need for retrospective
adaptations and provide users with the literature they need on time.

While reading is an important part, it is not enough for books to be accessible
for full participation in STEM to be possible. Users need to be able to author
mathematic expressions, solve equations, program, create graphs and
diagrams and communicate STEM with their peers to be able to work
independently.

In the Nordic countries, users often face an additional barrier: even though
tools for accessibility in STEM may be available, they are not always localised to
the Nordic languages. The Nordic agencies for accessible media and education
consist of MTM and SPSM (Sweden), NB and Statped (Norway), Celia (Finland),
Nota (Denmark) and HBS (Iceland). Since our users face the same challenges,
we collaborate on STEM accessibility.

STEM accessibility is a field undergoing rapid development, and to best serve
our users’ needs we need to keep up to date with the latest technology.
Therefore, we performed this tech review during spring 2025, with the intent
of getting an overview of what solutions exist, how accessible they are, and
how compatible they might be with one another.

The review is divided into ten parts:

• Screen readers
• Reading systems
• Writing math
• Calculators and graph programs
• Multiline tactile displays
• Graphs and diagrams
• Programming interfaces
• Learning platforms
• Conversion tools

https://www.mtm.se/
https://spsm.se/
https://tibi.no/
https://statped.no/
https://www.celia.fi/
https://nota.dk/
https://hbs.is/

11

• Large Language Models

STEM technology is a huge field, and with limited time and resources we have
had to limit the scope accordingly. For some areas we have had the possibility
to go into details with user testing, while for others we have mainly identified
gaps in our knowledge which need filling. Our findings have resulted in several
suggestions for further studies as well as for development projects. In addition,
we have compiled a set of recommendations for users on what solutions are
available right now.

It is our hope that this report will be of interest not only to accessibility
agencies, but also to producers and facilitators of learning materials, as well as
STEM tech developers in the industry. Together we can work towards greater
inclusion in STEM, so that everyone is free to choose career based on interest
rather than limitations.

1.2 Glossary
AT – Assistive technology, i.e. hardware and software which help persons with
disabilities function and participate independently. Includes e.g. screen readers
and refreshable braille displays.

BRF – Braille Ready File, an ASCII-based file format for pre-formatted braille.
Used widely in the USA and many countries across the world.

BVI – Blind or visually impaired.

CAS – Computer algebra system, i.e. mathematical software with the ability to
manipulate mathematical expressions in a way similar to the traditional
manual computations of mathematicians and scientists.

EAA – European accessibility act (European Comission, 2025).

IDE – Integrated Development Environment. A software application that
provides comprehensive facilities for software development. An IDE normally
consists of at least a source-code editor, build automation tools, and a
debugger.

LaTeX – A software system for typesetting documents, including mathematical
notation (LaTeX, 2025). It is commonly used for STEM publications.

LLM – a language model trained with self-supervised machine learning on a
vast amount of text, designed for natural language processing tasks, especially
language generation.

LMS – Learning management system. A software application for the
administration, documentation, tracking, reporting, automation, and delivery
of educational courses, training programs, materials or learning and
development programs. A platform where the school makes the learning
content and controls the system to some extent.

MathCAT – Math capable assistive technology (GitHub, 2025). A plugin tool for
screen readers that renders speech and braille from MathML.

MathJax – software which displays MathML markup for a reading system or
the web (MathJax, 2025). It has many settings for producing images of math,

12

MathML code, invisible math expressions and invisible text for math for screen
readers. These are hardcoded into the reader and not controlled by the user.
MathJax is also a converter tool. This means that the author can write
mathematics in LaTeX or MathML, and it will be rendered in the chosen output
format.

MathML – Mathematical markup language (W3C, 2025) for describing
mathematical notation and capturing both its structure and content. It is the
standard recommended by W3C for processing mathematics on the web, just
as HTML is for text.

Multiline tactile display – a device containing a display composed of pins
raised through holes in a flat surface. It can be used for tactile graphics,
multiline braille or both.

PEF – Portable Embosser Format, a Unicode-based file format for pre-
formatted braille. Used primarily in Scandinavia.

Reading system – Software for reading e-books.

Screen reader – A form of assistive technology that renders text content into
speech or braille output.

Sonification – The use of non-speech sound in an intentional, systematic way
to represent information.

STEM – Science, technology, engineering and mathematics.

TTS – Text-To-Speech, technology for converting written text into spoken
words using speech synthesis.

User – A person with a reading disability who has access to our agencies’
products and services.

UX – User eXperience, how a user interacts with and experiences a product,
system or service.

VLE – Virtual Learning Environment, where students study a digital-based
curriculum taught by instructors that lecture online via video or audio. More
directly aimed at learners than LMS, and the school does typically not make the
content.

WCAG 2 – The Web Content Accessibility Guidelines. The WCAG 2.0 consists of
12 guidelines that include testable criteria for accessibility at A, AA, and AAA
levels (W3C, 2025).

1.3 Acknowledgements
This review has truly been a team effort, and we are grateful for valuable input
and support along the way from our reference group and steering committee
at MTM, as well as from external referents. Special thanks go out to Eva
Bengtsson, Darrin Evans, Jimmy Freiding, Alfreð Halldórsson, Andrew Flatres,
Marie Ivarsson, Pontus Jeppsson, Stephen Simei Kimogol, Julia Lindberg,
Martin Persson, Stacy Scott and Peder Wollinger.

13

2. Screen readers
By Anders Eklund

2.1 Introduction
A screen reader is a type of assistive technology software that enables people
who are blind or visually impaired to use computers, smartphones, and other
digital devices. It works by reading aloud the text displayed on the screen using
synthesized speech and by converting it into braille, if the user has a
refreshable braille display.

Screen readers also give the user a description of the semantic structure of
web pages, documents, and applications, including text, buttons, menus,
images (if they have alternative text), and form fields. Users navigate through
the content using keyboard commands or gestures (on mobile devices),
allowing them to interact with digital content independently.

2.2 Screen Readers and Mathematics
For a screen reader to be able to read out mathematical expressions, the
expressions need to be coded in a format that the screen reader software can
process. The recommended format for accessible maths is MathML, which also
is the web standard for mathematics. It takes a lot more than being able to
read out numbers and symbols correctly. The structure of a mathematical
expression needs to be correctly explained to the user, using appropriate
terminology. This requires a stringent markup of high quality and software that
can parse and correctly interpret mathematical expressions. Not all screen
readers have this. Some screen readers rely on third-party additions and some
also rely on intermediate technology, such as MathJax, to handle MathML
content.

2.2.1 MathJax

MathJax (MathJax, 2025) is an open-source JavaScript display engine designed
to produce high-quality mathematical typesetting in web browsers. It allows
authors to include mathematical content on web pages using standard markup
languages such as LaTeX, MathML, and AsciiMath, which MathJax then renders
with precision and accessibility.

MathJax works consistently across all modern browsers without need for
additional plugins. It also has some accessibility features that can provide
semantic information to screen readers.

2.2.2 MathCAT

MathCAT (GitHub, 2025) is an open-source software that converts MathML
expressions into speech strings with embedded speech engine commands and
into strings for output on refreshable braille displays. It also allows a user to

14

navigate a mathematical expression and zoom in and out of the various layers
in the expression.

The software was initially built to function as an addon to the open-source
Windows screen reader NVDA. However, the software can also be built into
other applications.

The software is designed to make translation into other languages or braille
standards possible. At this point, available languages for speech are English,
Spanish, Swedish, Finnish, Vietnamese, Indonesian and Taiwanese Chinese.
Available braille options are Nemeth, UEB, LaTeX, ASCIIMath, Swedish and
Vietnamese.

2.3 Screen Reader Testing
Testing was performed between March and May 2025 for the screen readers
that I had access to. Other screen reader options were investigated through
online research. Note that the tests concern screen readers, not text-to-speech
tools.

Testing was done by loading an HTML file with MathML expressions into a
browser (Chrome for Windows and Safari for iOS) and start the screen reader.
A refreshable braille display was also connected. Another HTML file, which uses
MathJax to render the MathML, was then opened and the output between the
two files were compared.

2.3.1 JAWS

OS: Windows
Native MathML: Yes. JAWS still has its own MathML support, which works in
English. MathCAT is in the "Upcoming functions" section and can be activated.
It seems to work in English only and I can't access any settings for MathCAT.
Hopefully this will be resolved soon.
Using MathJax: MathJax doesn't seem to make any difference.
Braille output: The current functionality has Nemeth output only.
Languages: Currently only English.

2.3.2 NVDA

OS: Windows
Native MathML: Yes. With MathCAT addon NVDA has support for native
rendering of MathML.
Using MathJax: It works with MathJax but is not dependent on MathJax to get
it to work.
Braille output: Yes. Nemeth, UEB, Swedish braille, LaTeX and ASCIIMath.
Languages: A selection of languages at this point, including Swedish and
Finnish.

2.3.3 VoiceOver

OS: iOS
Native MathML: Yes. It seems that VoiceOver has some built-in support for

15

MathML, but the quality depends on the reading system. Safari seems to be
the best option, but there are some issues. It is not as good as MathCAT. For
instance, VoiceOver doesn’t handle tabular math expressions as well as
MathCAT does.
Using MathJax: Seems to be able to give a more reliable experience but needs
to be tested.
Braille output: Not very good. The only support that exists is for UEB with
English as main language. But it is still not complete.
Languages: English and Swedish were tested.

OS: MacOS
Native MathML: I do not have access to a Mac computer, but online research
seems to suggest that MathML support is still unreliable, but slightly better
than on the mobile OS. Still, Safari is the best choice of reading system.
Using MathJax: Seems to be able to give a more reliable experience but needs
to be tested.
Braille output: Not very good. The only support that exists is for UEB with
English as main language. But it is still not complete.
Languages: Not tested but should be the same as for the iOS version.

2.3.4 TalkBack

OS: Android
Native MathML: No. It can read numbers and symbols but has no semantic
interpretation.
Using MathJax: No difference with MathJax.
Braille output: No useful output.
Languages: Irrelevant, since there is no MathML support.

2.3.5 Narrator

OS: Windows
Native MathML: No. Narrator has very limited possibilities and no actual
MathML support.
Using MathJax: No difference with MathJax.
Braille output: No useful output.
Languages: Irrelevant, since there is no MathML support.

2.3.6 Orca

OS: Linux
Native MathML: Not tested. Online research suggests that it can read numbers
and symbols but has no semantic interpretation. I have not found out if there
are any third party addons that enable MathML support.
Using MathJax: Not tested.
Braille output: Not tested.
Languages: Not tested.

2.3.7 Dolphin Supernova and ScreenReader

OS: Windows

16

These products were not tested as I had no access to them. Also, online
research suggests that Dolphin has integrated MathCAT into their reading
application, EasyReader, and not in their screen reader. This suggests that
using the Dolphin eco system still would enable reading maths, but only using
their reading system, not globally.

2.4 Conclusions
The tests indicates that Windows and iOS/MacOS are the best OS choices for
reading maths, as NVDA, JAWS and VoiceOver all have support for MathML.
For braille readers the Windows options are the most reliable. For languages
other than English, VoiceOver might still be an option, although not for braille
output. For non-English braille output MathCAT seems to be the only actual
option, but it may require translating it first, if the desired language option is
not yet available. MathCAT also has the option of displaying LaTeX or
ASCIIMath on a braille display, which are commonly used solutions for students
who are braille readers.

If you aren’t depending on a screen reader for navigation and semantic
overview of the screen content, but only need to have the content read aloud,
a TTS software, such as ReadSpeaker could be an option. ReadSpeaker
(ReadSpeaker, n.d.) has MathML support that is dependent on MathJax. This
works in English, but there may be other language options.

When it comes to future development in screen reader support for
mathematics, a lot depends on the big corporations, such as Microsoft, Apple,
Google etc. But securing a future for a tool, such as MathCAT, is also
important, as well as advocating for interested parties to make translations
into more languages.

17

3. Reading systems’ support for
MathML
By Sami Määttä

3.1 Background
As a part of the STEM tech review, it was investigated how the MathML
markup is rendered in reading systems. Many (if not all) reading systems are
built upon different browser engines, so some conclusions can be drawn from
which a specific reading system has been built from.

The caveat is that from the moment a browser engine is adapted for a reading
system, they start to diverge, and the developers of the reading systems need
to update the underlying engine to match the latest development of the
browsers. Users might expect similar accessibility and usability in reading
systems as they do on the web in a browser.

Based on this review, it can be said that the reading systems seem to lag
behind the most widely used browser engines Chromium [Google Chrome,
Windows Edge] (Chromium, n.d.), Gecko [Mozilla Firefox] (Gecko — Firefox
Source Docs documentation, n.d.), Webkit [Safari] (WebKit, n.d.)) and
conclusions can’t be drawn from just the knowledge of the engine. For many
reading systems the engine is also not known.

3.2 Research question
How do different reading systems support the visual rendering of MathML
markup?

3.2.1 Why focus only on visual rendering?

Most digital book (e-books, talking books) formats are made of XHTML or
HTML files. The MathML markup present in the files is exposed to the user in
the book even if it is not rendered visually. This means, for example, a user
using MathCAT with a screen reader, would still be able to access the
mathematics of the MathML markup (GitHub, 2025). Blind users using screen
readers would have an acceptable experience using a reading system without
the visual rendering of MathML markup. However, the e-book won’t be
accessible for users with other print disabilities. Some examples of scenarios,
where visual rendering of MathML markup is needed:

• A user requiring zooming of math content. This user might have a visual
impairment but not be blind or use a screen reader. If MathML was
invisible or poorly rendered, it would be useless to the user.

• A user with dyslexia, or challenges in perception, when they are
reading an e-book with a synthetic voice. They would hear the
mathematical equation, but not see the equation at the same time,

18

which would cause confusion. Same goes for a sighted person using a
screen reader.

Anybody else with or without disabilities would also have a subpar experience
with a mathematics e-book that doesn’t visually render the MathML markup
correctly.

3.3 Research design

3.3.1 Chosen test e-book

An e-book with mathematics was prepared to use in testing. The e-book can be
downloaded though The e-book can be downloaded from Google Drive
through this link (Google Drive, 2025). It is based on the Accessibility Test
Mathematics v.1.1.1 (epubtest.org, 2025).

The test e-book is a full-text e-book and it has no audio. It is written in English,
but it makes no difference to the results of the testing.

3.3.1.1 Modifications to the test e-book
The scope of tests in Epubtest.org was not sufficient for the purposes of this
review (epubtest.org: Test visual-550 in Visual Adjustments (2.0.0), n.d.). That
is why more MathML elements, which are known to potentially cause issues in
visual rendering, were added. The problems can be noticed when the
typesetting and placement of elements inside the math elements behave
oddly.

Especially the elements that stretch math expressions vertically or have specific
typesetting can cause issues with visual rendering. These can be for example
the index in a root element, a strike-through in an enclosed element or having
the enclosed parentheses stretch vertically around a matrix.

Such added math elements include:

• roots (<msqrt>, <mroot>)
• large operators
• fractions (<mfrac>)
• enclosures (<menclose>, which is not supported in MathML Core, but is

supported in MathCAT) (MathML Core, n.d.)
• table-like expressions (<mtable>) such as a piece-wise function,

equation solving and matrices.

3.3.2 Criteria for defining support for visual rendering of MathML

There were four labels a reading system could receive that described the
support for visual rendering of MathML markup. The following labels have
a clear hierarchy:

1. Native support for MathML
2. Partial support for MathML
3. No support for MathML.

https://drive.google.com/file/d/1Dv4OvTQ_5aohbpHi5LlJh9mnlHxtffkJ/view
https://drive.google.com/file/d/1Dv4OvTQ_5aohbpHi5LlJh9mnlHxtffkJ/view

19

Outside of this hierarchy is the use of MathJax, which displays MathML markup
for the reading system (or the web) (MathJax, 2025). It can be thought of as a
separate program that handles the MathML markup for the reading system.

MathJax has many settings for producing images of math, MathML code,
invisible math expressions and invisible text for math for screen readers.
Customization possibilities for MathJax are great, but this is not controlled by
the user of a reading system. The settings are determined by the developers.
This can result in clashes with the assistive technology being used.

For example, MathJax can output invisible text for describing the mathematics,
but the language of the text might be different from what the user wants.

MathJax is also a converter tool. This means that the author can write
mathematics in LaTeX or MathML, and it will be rendered in the chosen output
format.

3.3.2.1 Native support for MathML
If the support is on par with current browser support, then the reading system
is labelled to have native MathML support. This includes support for

• Basic visual rendering: simple one-line expressions, roots and
subscripts and superscripts.

• Visual rendering of "2D mathematics" such as fractions.
• Visual rendering of multiline mathematics such as <mtable>, which is

used for expressions like piece-wise functions, matrices and equation
solving.

• Support for enclosures is not required. (Chromium-based browsers
don't render enclosures.)

Current browser versions support the MathML Core specification quite well.
There are visual differences between browsers, but they are not major. For
example between Mozilla Firefox (Gecko) and Google Chrome (Chromium) the
spacing between elements differ: Firefox’s rendering is more compact, and
Chrome’s has more space between characters. Chrome does not support the
strikethrough element (enclosure), but Firefox does.

3.3.2.2 Partial support for MathML
If only one criterion in "native MathML" is not met.

This means that the reading system has support for multiple math elements,
but the support is missing for one element. This way the reading system can be
useful, but not ideal.

3.3.2.3 No support for MathML
If more than one criterion in "native MathML" is not met.

This means that a reading system can have support for individual math
elements but still be categorized as having no support for MathML.

3.3.2.4 Support for MathML by MathJax
If it can be ascertained that MathJax has been used. This decision is based on
personal experience or knowledge of the reading system.

20

MathJax also provides the support for the enclose (“strikethrough”) element
and because it works in all platforms that can run JavaScript, it is a good
solution for MathML support.

3.3.3 Tested reading systems

The reading systems that were tested are listed below with the test results.
The reading systems were based on a list on epubtest.org and suggestions
from other reviewers of the STEM tech review team.

The tests include reading systems on the desktop, mobile and web (web
readers).

The tests were done in different language versions of the reading systems, but
it makes no difference to the results of the testing.

3.3.4 Limitations

No testing has been done on MacOS or Linux operating systems, because there
was no access to them.

The mobile operating system used for testing was mainly Android. Some
reading systems on mobile were tested with iOS when it was possible.

There were some reading systems that couldn’t be installed on a workstation,
so they are not in the testing pool. They have not been specified.

No e-ink reading devices were tested.

3.4 Results
Below are the test results for different reading systems. Also included is
information on version of the tested reading system (when available), the
supported platform(s) for reading systems, operating system that the reading
system is available for, and lastly some notes about the test and support.

A question mark (?) has been added to some reading systems’ operating
system(s) and platform(s) if there was no knowledge of which are supported.

3.4.1 Thorium Reader

(Thorium Reader, n.d.)

Tested version: 3.0

Available on platform(s): Desktop

Available on operating system(s): Windows, Linux, MacOS

Testing result (label): MathJax (only tested on Windows).

Notes: Thorium Reader is based on Chromium, so it could be possible to have
native MathML support when EDRLab (the developers) decide to upgrade the
version of Chromium they use. Now it requires MathJax.

21

EDRLab is also developing a web reader, which relies on the browser’s engine
to render MathML. They are also developing a mobile app, but it is unclear
what the level of support in general for MathML would be.

3.4.2 Calibre e-reader

(Calibre - E-book management, n.d.)

Tested version: 7.22

Available on platform(s): Desktop

Available on operating system(s): Windows, Linux, MacOS

Testing result (label): MathJax (only tested on Windows).

Notes: Calibre can be used on mobile to manage books, but no mobile reading
app exists.

3.4.3 Adobe Digital Editions

(Adobe Digital Editions, n.d.)

Tested version: 4.5.12.112

Available on platform(s): Desktop

Available on operating system(s): Windows

Testing result (label): MathJax

Notes: There are issues in rendering roots’ indices in the correct position.

3.4.4 Dolphin EasyReader

(EasyReader App | Dolphin Computer Access, n.d.)

Available on platform(s): Desktop, mobile.

Results are listed below for each platform.

3.4.4.1 Desktop
Tested version: 11.0.5 build 622

Available on operating system(s): Windows, Linux, MacOS

Testing result (label): Native MathML (only tested on Windows).

Notes: No support for <mspace>, which can be used to create space between
math elements.

3.4.4.2 Mobile
Tested version: 11.05 build 825

Available on operating system(s): Android

Testing result (label): Not tested

Notes: Crashes on launch, so no testing could be done.

22

3.4.5 Colibrio Reader

(Colibrio Reader - Colibrio Reader, n.d.)

Available on platform(s): Web reader, mobile app.

Results are listed below for each platform.

3.4.6 Web reader

Tested version: 250204-1455

Testing result (label): Partial support

Notes: There is no spacing between elements in matrices. The web reader
doesn’t (only) use the browser’s engine to render MathML, since then the
expected support should be on the same level as the browser’s. It is difficult to
know why this is the case without contacting the developer.

3.4.7 Mobile app

Tested version: 1542

Available on operating system(s): Android

Testing result (label): Partial support

Notes: Simple roots and fractions display well. If the root’s index is a two-digit
number, then the positioning of the number causes rendering issues where the
different parts of root notation overlap. No support for stretched parentheses
in multiline math.

The mobile app uses mobile Chromium as its base. There were some bugs in
the rendering of MathML that are known to the Chromium team based on
Colibrio’s developer’s comments.

3.4.8 Pratsam Reader

(Pratsam Reader App – Pratsam, n.d.)

Tested version: 5.11 (292)

Available on platform(s): Mobile

Available on operating system(s): Android, iOS

Testing result (label):

• Partial support (Android)
• Native MathML or MathJax (iOS)

Notes: Pratsam Reader uses Colibrio for its EPUB reader. Some bugs are due to
mobile Chromium, which is used for mobile Colibrio’s engine. iOS’s mobile app
has better support for MathML than the Android version. It can’t ascertained
which method is used to render MathML in iOS without contacting the
developer.

23

3.4.9 Lithium: EPUB reader

(Lithium: EPUB Reader – Google Play, n.d.)

Tested version: 0.24.6.1

Available on platform(s): Mobile

Available on operating system(s): Android

Testing result (label): No support

Notes: The app has support for fractions, but not any of the other elements:
roots, exponents or matrices. This reader might be based on Readium.

3.4.10 Cantook by Aldiko

(Cantook by Aldiko – Google Play, n.d.)

Tested version: 1.12.2

Available on platform(s): Mobile

Available on operating system(s): iOS, Android

Testing result (label): No support (only tested on iOS).

Notes: Fractions were rendered, but otherwise there was no support.

3.4.11 Kobo Books

(Kobo | Rakuten Kobo, n.d.)

Tested version: No version number recorded.

Available on platform(s): Mobile

Available on operating system(s): iOS, Android

Testing result (label): No support (only tested on iOS).

3.4.12 Legimus

(Legimus, n.d.)

Tested version: Not tested

Available on platform(s): Web reader, mobile

Testing result (label): Not tested

Notes: Web reader and mobile app, which is provided by MTM to their users.
New web reader and mobile app are being developed. Both are based on
Readium, which is used in Thorium Reader as well. As was mentioned in the
Thorium Reader subsection, the web reader will rely on the browser’s support
for MathML. The mobile app’s future support for MathML is unclear.

3.4.13 RedShelf

(RedShelf, n.d.)

24

Tested version: Not tested

Available on platform(s): Mobile, ?

Available on operating system(s): Android, ?

Testing result (label): Not tested

Notes: Account couldn’t be created on mobile.

3.4.14 Nota Bibliotek 2.0

(Nota Bibliotek 2.0 app | Nota bibliotek, n.d.)

Tested version: Not tested

Available on platform(s): Mobile

Available on operating system(s): Android, iOS

Testing result (label): Not tested

Notes: The Nota app is used in Denmark, and it is provided by Nota to their
users. It is based on Readium, which is the same system that Thorium Reader
uses. As was mentioned in the Thorium Reader subsection, the mobile app’s
future support for MathML is unclear.

3.4.15 Book Share

(Bookshare, n.d.)

Tested version: Not tested

Available on platform(s): Mobile, ?

Available on operating system(s): Android, iOS

Testing result (label): Not tested

Notes: No e-books could be manually added to the app on Android. iOS was
not tested.

3.4.16 Play Books

(Google Play Books, n.d.)

Tested version: No version number could be found.

Available on platform(s): Mobile

Available on operating system(s): Android

Testing result (label): Not tested

Notes: The test e-book couldn’t be transferred to the app.

3.4.17 Clusive

(Clusive, n.d.)

Tested version: No version number could be found.

25

Available on platform(s): Web reader, ?

Testing result (label): No support or not tested

Notes: The test e-book could be uploaded to the web reader, but it doesn’t
display files with MathML in them and throws an error. It is unclear why this
happens, so it has been labelled with no support as well as not tested.

3.5 Conclusions
The results on support of visual rendering of MathML are presented in the
table below.
Table 3-1: Results on support of visual rendering of MathML.

Support for TathML Number of reading systems

MathJax 3

Native support for MathML 2

Partial support for MathML 3

No support 4

Not tested (6 reading systems): Legimus, RedShelf, Bookshare, Nota app, Play
Books and Clusive.

3.5.1 Best support when using MathJax

The best support for visual rendering for MathML markup comes from using
MathJax. Mathjax is used in

• Thorium Reader
• Calibre e-reader
• Adobe Digital Editions.

MathJax still produces the highest quality of mathematics rendering in reading
systems. Combined with the lack of support for native MathML, MathJax
seems to be the best choice for rendering mathematics.

It is hard to find out which settings each reading system uses without
contacting the developer directly.

For some reason Adobe Digital Editions still had challenges in displaying root
elements indices in the correct position and place. This should be handled by
MathJax, so it could be that the reading system doesn’t use it or that there is
something else going on with the rendering.

3.5.2 Native MathML support is rare

Only two of the tested reading systems seemed to have (near) support for
native rendering of MathML markup:

• Dolphin EasyReader on desktop
• Pratsam Reader mobile app for iOS.

26

It is not clear if Pratsam Reader mobile app for iOS uses MathJax without
contacting the developer.

Even if the reading system qualified for “native support for MathML”, it still
could be spotty in places and not the highest quality compared to MathJax or
the Gecko-based browser engines.

No reading system that was tested can be recommended for native visual
rendering of MathML markup. It became clear that even when there seems to
be native support for MathML, there might be some elements that are not
rendered correctly.

More testing should be done with EasyReader (desktop) to see which math
elements it supports and how this might change in the future.

3.5.3 Partial support

Partial support for visual rendering of MathML markup was in

• Colibrio Reader web reader
• Colibrio Reader mobile Android
• Pratsam Reader on mobile Android.

Reading systems with partial support can’t be recommended for use, since
the user can never know which parts of MathML are supported.

3.5.4 No support is the most common in mobile apps

No support for visual rendering of MathML markup was in

• Apple Books on mobile iOS
• Lithium: EPUB reader on mobile Android
• Cantook by Aldiko on mobile iOS
• Kobo Books on mobile iOS.

“No support” might still mean some support, but it is very unreliable. At most it
can mean that simple operations such as plus, minus, times and divided by are
supported. However, many times anything that requires other symbols, such as
the root or fraction line, is not displayed at all.

No patterns emerged from different tests as to which elements are supported
in these mobile apps. This might suggest that many mobile apps use different
engines or different versions of the same engines.

3.6 Discussion

3.6.1 Next steps

1. MathJax provides the best visually rendered experience, but it might
hinder the experience of using assistive technologies, because MathJax
has many settings that have been set by the developers of reading
systems. Users can’t change these settings on their own. MathJax is
used in Thorium Reader, Calibre e-reader and Adobe Digital Editions.

27

Next steps: Encourage reading system developers to implement native
MathML support and make MathJax customization controller by the
user or the settings very lightweight.

2. Mobile apps have poor support for MathML.

Next steps: Reading system developers should be encouraged to
implement native MathML support for mobile apps. EDRLab is
developing a mobile app based on Readium and they should be
encouraged to implement MathML support on par with Chromium-
based browsers, since this is what their app will most likely be based
on. Colibrio should be encouraged to improve the mobile app’s
MathML support.

3. Native MathML support should be the end goal of all reading systems.

Next steps: The agencies should continue to encourage usage of
MathML in web and e-book environments. Native MathML works best
with assistive technologies now and in the future, but it is less versatile
in usage than MathJax.

3.6.2 In-depth discussion

In short it can be said that the visual rendering of MathML markup is not
uniform across different reading systems.

The best support for MathML markup comes from using MathJax, since it
works across platforms if it is implemented. It is a problem that the user
doesn’t know how MathJax has been set up and the user can’t change these
settings by themselves.

There is some native support for MathML markup in desktop and web apps,
but even this doesn’t mean that the reading experience would be the
smoothest. Since web readers are used in a browser, it was assumed that the
MathML support would always be native support. This was proven incorrect by
Colibrio’s web reader. This means that using a web reader doesn’t guarantee a
browser’s level of support for MathML markup.

The mobile reading systems seem to fare the worst when it comes to MathML
markup. In general, the mobile apps either have partial support or no support
at all, and they should be improved in the future. Until then, the desktop apps
should be recommended for use.

3.7 Further research
More testing needs to be done to find out what exactly is the scale for visual
rendering MathML support in reading systems.

28

The test e-book should have more rigorous and systematic representation of
different math elements, since during testing it was found out that some
elements, that were should have been supported, were not (such as the
<mspace> in desktop Dolphin EasyReader).

Maybe in the future it could also be considered how the visual rendering of
MathML conforms to the relevant WCAG 2.2 criteria (W3C, 2024).

With more resources, different reading systems could be tested if they would
require licenses or subscriptions. The need for testing in different operating
systems is apparent.

Epubtest.org continues to test for mathematics in EPUB books, but the tests
are very limited (epubtest.org: Test visual-550 in Visual Adjustments (2.0.0),
n.d.). A notable difference to this review is that epubtest.org also tests
zooming of mathematical equations.

3.7.1 Note on the review

All the tests that were planned have not been done. Notable misses on the
tests: Legimus and Nota’s apps.

29

4. Writing Math
By Lisa Hartun Bennedsen

4.1 Introduction
The following explores how blind and visually impaired students write and
access mathematics in both the Danish educational system and broader
international contexts.

The research seeks to answer the following questions: How do BVI students in
Denmark and abroad write mathematics in practice? What assistive
technologies, workflows, and support systems are currently enabling or
obstructing their participation in mathematics education?

In Denmark, students often rely on familiar tools from primary school such as
Word with WordMat, and technologies like GeoGebra, TI-Nspire, or Maple -
with varying degrees of accessibility.

Internationally, students adopt a range of approaches depending on local
infrastructure, institutional expectations, and available training, often
combining LaTeX, ASCII math, screen readers, braille displays, and audio-based
tools like Desmos or EquatIO.

For the purposes of this study, a screen reader is defined as software that
reads aloud digital content or sends it to a braille display (e.g., JAWS, NVDA,
VoiceOver), while a reading system refers more broadly to any combination of
software, hardware, and human or procedural support that enables blind
students to interpret and produce mathematical content.

The study highlights the lack of universally accessible tools and emphasizes the
importance of flexibility, institutional awareness, and student-driven
adaptation in overcoming structural barriers in math education.

4.2 Blind Students in Denmark
This report is based on insights gathered through ongoing, dialogic
engagement with 14 participants. These conversations have taken place over
time and in a variety of informal and semi-structured contexts, including
follow-up discussions and reflective exchanges. While not conducted as formal
interviews or surveys, these dialogues have enabled a rich and iterative
understanding of the participants' experiences. All participants are referred to
as "students", even if not currently enrolled in an educational program.

Of the 14 participants, 2 blind participants are enrolled in higher education
institutions, focusing exclusively on STEM subjects (fields of study are not
specified to ensure greater anonymity). 6 have attended upper secondary
education. 6 have been enrolled in various higher education programs and
have completed at least one full year of studies (60 ECTS points).

30

4.2.1 Challenge

Most of the students report that they have learned mathematics in a way that
makes sense to them, but not necessarily to others. When they need to
submit assignments or take exams, they rely on a secretary or support person
who "translates" their math into standard notation.

Many describe situations where they were able to solve a task with no
difficulty, but because they accidentally entered some "gibberish" without
noticing, they received a lower grade or were perceived by teachers as "less
intelligent" - sometimes even as "mildly mentally impaired."
Experiencing this a few times leads many to feel that "it's just more
comfortable to have someone check for typos."

Most students continue to use the software they learned in primary school, or
the software required in upper secondary school. Many of them make
extensive use of Excel for creating tables and graphs, while a teacher,
secretary, or support person assists with the visual setup of the graph.

4.2.2 Primary School: WordMat, GeoGebra, MatematikFessor

WordMat (GitHub, 2025) can be read aloud, but the student must click the
field to trigger the screen reader.
Therefore, blind students typically write their math in Word using "their own
language" and do calculations on the computer's calculator, which is navigable
with NVDA/JAWS and a braille display.

GeoGebra (What is GeoGebra?, u.d.) can be navigated and used to generate
graphs but generally requires a good friend to assist with navigation, as it can
be confusing or overwhelming.

Desmos (Desmos accessibility, n.d.) allows graphing and even displays input in
Nemeth Braille. Once a graph is created, the "graph tracing menu" can be
activated with Alt+T.
The user can scroll through the graph using arrow keys while the screen reader
reads out the coordinates. Pressing Tab jumps between "points of interest"
such as axis intersections or extrema.

The highlight, however, is pressing H, which plays the graph from left to right
using pitch to indicate function values (low pitch for low values, high for high).
Variations in sound characteristics (volume, background noise) further indicate
whether a point is above or below the x-axis or to the left or right of the y-axis.
Desmos is only used in higher education in Denmark, unless a blind student has
managed to "push it through" with the teacher.

MatematikFessor is Not Fully Accessible
MatematikFessor (MatematikFessor, 2025) is a very visual platform. Many
elements (task descriptions, buttons, graphs) lack appropriate alt text or have
poorly structured ARIA roles, making navigation difficult or impossible.

Math is often rendered as images, not as semantic text (like MathML or LaTeX),
which makes it unreadable by screen readers - this includes fractions,
exponents, and symbols.

31

Interactive exercises such as drag-and-drop, multiple-choice, and click-based
tasks are inaccessible without sight, especially when answers aren't read aloud
or detectable by a screen reader. Keyboard navigation is often inconsistent.

MatematikFessor is used extensively in primary school, from grade 0 to
grade 6.
This undermines blind students' independence, as they need support staff
to help them "solve the tasks correctly."

4.2.3 Biggest Challenge: VLE:s in Primary School

These platforms often don't respond to screen readers. One student shared:

"The other day he had an English test, but he couldn't complete the grammar
part, because the screen reader couldn't read the tasks coherently. So he had to
submit only part of the test and email it to the teacher.
‘There's not much to be done about it. I can get as frustrated as I want, but it
doesn't help. It's better to focus on how I can do the task anyway,' says X,
whose teachers are understanding and cooperative in finding alternative
solutions. Even so, X is dependent on his secretary, who translates the tasks
into an accessible format.
‘Teachers upload assignments in OneNote, which isn't very screen reader
friendly. It's hard to navigate and find the files. So my secretary receives the
assignments and converts them into a readable format, then sends them to me.
He's basically a go-between for me and my teachers,' says X."

4.2.4 Conclusion: Writing Math in Primary School

Students focus on solving the problems correctly, while someone else
translates them into "standard math."
They often skip visual or graphical elements and focus on what they're good at.
This can lead to lower grades, simply because they didn't have the time or tools
to handle the graphical tasks.

4.3 Upper Secondary School Tools

4.3.1 TI-Nspire, Maple, Math Platforms, and CAS Tools

The TI-Nspire CAS graphing calculator (Texas Instruments, 2025) is a robust,
hands-on learning tool that supports math and science instruction from middle
school and further. In Denmark, it plays a central role in General Upper
Secondary Education Programmes (STX) and Higher Technical Examination
Programmes (HTX). Students typically use both the handheld calculator and the
TI-Nspire Computer Software, which mirrors the calculator interface, for a wide
range of tasks including algebra, graphing, statistics, and equation solving.

In HTX, and to some extent in STX, students also work with Maple (Maple,
n.d.), a powerful Computer Algebra System (CAS) well-suited for symbolic and
numeric mathematics. It is especially valued for its capabilities in modelling,
solving complex equations, and exploring advanced mathematical functions.

32

GeoGebra remains a popular choice across upper secondary schools,
particularly for visualizing geometry, functions, and data. Its free availability as
both an app and web-based tool makes it widely accessible for interactive
learning.

To support classroom instruction and independent study, platforms like
Matematikbogen.dk, Restudy, and Ma.fi offer structured assignments,
interactive exercises, and explanatory videos. In addition, students frequently
supplement their learning with online CAS tools such as WolframAlpha
(Wolfram Alpha, 2025) and Symbolab (Symbolab, 2025) for quick problem
solving, differentiation, and equation handling.

4.3.2 Maple Is Clearly Better for Visually Impaired Students.

Maple is text-based, while TI-Nspire is heavily dependent on visuals - small
icons, menus, drag-and-drop, and pop-ups.
Keyboard navigation in TI-Nspire is often confusing, and screen readers can't
interpret math correctly.

4.3.3 Comparison between Maple and TI-Nspire

Feature Maple TI-Nspire

Screen reader support Partially possible Very limited

Keyboard navigation Support Limited and illogical

Math as text (e.g., MathML) Can be exported and
edited Often unreadable

CAS access and interactivity Scriptable and
accessible GUI-heavy and visual

Real use by blind
students

Used in higher
education

Nearly unusable
without sight

Support for assistive tech Third-party integration
possible No official support

In Maple, you can enter commands like:
diff(x^2 + 3*x, x);

And get a text-based answer that the screen reader can read aloud.
This makes it possible to write and understand math without visual interaction.

Maple works relatively well with screen readers. While not perfect, it allows
keyboard-only navigation, reading math as text (not images), and exporting
results in screen reader-accessible formats.

Blind students can use Maple with JAWS or NVDA for speech output, a braille
display (if they read braille), keyboard shortcuts instead of menus, and export
to MathML or plain text. It allows for conversion to braille.

33

4.4 Higher Education
In STEM higher education programs in Denmark, LaTeX-based math is always
used.

Most blind students have a decent foundation in LaTeX if they're interested in
math, but up to C-level math in high school, only a few elements are commonly
used: \frac{}{}, \sqrt{}, ^, _, and * (for multiplication). Only those with an active
interest in math will expand their "LaTeX vocabulary."

All science and engineering degrees require A-level math from high school. In
higher education, students use whatever already works - unless they're
introduced to something smarter and faster.

Only two of the students openly stated that they routinely use Snapchat
(SnapChat, 2025) or AI (mainly ChatGPT, but sometimes ChatGPT would spit
out such obscure and strange values that the students also tried Copilot and
Gemini (Barda, Jensen, & Singh, 2023)). They used Snapchat or AI to find the
solution first and then reverse-engineered the process. Snapchat is widely used
for this purpose when students work on math problems independently.

4.4.1 How Snapchat Can Help Solve a Math Equation

Snapchat has a built-in feature powered by Scan and AI tools, including
integration with Photomath (Photomath, 2025), a math-solving app. Here’s
how it works:

Step-by-step:

1. Open Snapchat on your phone.
2. Point the camera at a math problem (handwritten or typed).
3. Tap the Scan icon (usually appears as a small square or magnifying

glass).
4. Snapchat will analyze the math problem and show a solution

suggestion.
5. It may link to Photomath, which gives: The final answer, Step-by-step

solution and an explanation of the method used.
What it can solve:

• Basic arithmetic (e.g., 42 divided by 6).
• Algebraic equations (e.g., 2x+3=11).
• Fractions, square roots, linear equations.

Limitations:

• Doesn't handle very complex math (e.g., integrals or matrices).
• Might misread messy handwriting.
• It's a quick-help tool, not a full math tutor.

34

4.4.2 Request from BVI Danish High School Students

Just like students with physical disabilities (e.g. blindness, amputation, arthritis,
or paraplegia) can be exempted from physical education, students with
blindness or severe visual impairment should be eligible for dispensations in
math.

Why? It's extremely hard for a blind student to learn math symbols and their
meaning. Math is a visually oriented subject, where graphs, geometry, and
symbolic notation are central.

There are currently no tools or methods that allow blind students to access
math on anything resembling an equal footing. Screen readers struggle to
correctly pronounce mathematical notation.

The subject includes graphs and geometry, which must be observed,
interpreted, and produced by the student.

Math is especially difficult to communicate and understand purely verbally,
without visuals or written content.
Any verbal interaction around math is usually accompanied by written
notation.

From visual and special education consultants' perspectives, exams should be
designed so that blind students aren't tested on visual tasks.
This includes film analysis (where mood and lighting must be interpreted) or
math tasks requiring graph interpretation, as the only solution.

4.5 Authoring Math Accessibly: Overleaf and
Alternatives

When it comes to writing mathematics independently and accessibly -
especially in higher education and professional contexts – Overleaf (Overleaf,
2025) is frequently cited as a preferred tool among blind and visually impaired
students. This section draws on two sources:

1. Direct observations from the Danish student participants, particularly
those enrolled in STEM programs at the university level.

2. Supplementary desktop research, used to explore international
alternatives and fill gaps where student experience was limited or
inconclusive.

Overleaf was used by students consistently and independently, primarily due
to its cloud-based interface, collaborative features, and compatibility with
screen readers such as JAWS and NVDA However, students also highlighted
challenges, including the inaccessibility of the live preview pane and difficulties
troubleshooting LaTeX errors non-visually (e.g., missing braces or unmatched
commands).

To better understand the broader ecosystem of accessible math authoring
tools, a targeted desktop review was conducted to identify additional LaTeX
editors and alternative environments. These tools were identified through
accessibility community forums, research publications, and assistive

35

technology resource pages (e.g., W3C Math Accessibility Task Force, 2023;
American Printing House for the Blind, 2022). The following were examined,
though not reported by any of the Danish students in this study:

• TeXstudio, TeXworks, and WinEdt: Offline LaTeX editors with
customizable interfaces and some potential for screen reader
integration when properly configured (Pimentel & Freitas, 2019).

• Visual Studio Code with LaTeX Workshop Extension: A widely used,
customizable text editor that supports LaTeX via extensions. While
accessible in theory, it requires technical skill and comfort with
extensions and terminal commands (Bigham et al., 2020).

• Markdown editors with MathJax/KaTeX: Used in lightweight or
collaborative contexts for rendering inline math, particularly in
educational blogs and note-sharing platforms (Smith & Miesenberger,
2021).

• Emacs with AUCTeX and speech output extensions (e.g., Emacspeak): A
highly customizable option used by a small community of expert users
(Raman, 2021), though its steep learning curve and niche status limit
broader adoption.

These tools provide additional insight into the variety of environments where
blind users may write or edit mathematical content, especially outside of
formal education. However, their accessibility varies widely depending on user
skill level, local support, and platform configuration.

4.5.1 Overleaf

Overleaf is a cloud-based LaTeX editor widely used in academia, especially in
STEM fields. Its popularity among blind students comes from a few key
features:

• Code-based input: LaTeX is purely text-based, meaning students can
write complex math without needing to interact with visual symbols or
layouts.

• Screen reader compatibility: The editor itself is mostly accessible with
screen readers like JAWS, NVDA and VoiceOver, though improvements
are still needed, especially in the live preview pane.

• Collaboration: Students can write in LaTeX and have teachers or sighted
peers review and edit the same file - without translation steps.

• Standardization: LaTeX is the accepted format in most higher education
STEM programs, meaning blind students using Overleaf are already
working in the required academic format.

However, some challenges remain:

• The live PDF preview pane is not accessible.
• Syntax errors (missing brackets or commands) can be difficult to

troubleshoot with a screen reader alone.
• Overleaf requires a stable internet connection and a degree of

familiarity with LaTeX packages and document structure.

36

Despite this, Overleaf is one of the most-used platforms globally for blind
students studying STEM subjects, particularly in countries with strong
academic traditions in LaTeX.

4.5.2 Alternatives

Desktop LaTeX Editors
TeXstudio (TeXstudio, 2025), TeXworks (Sourceforge, 2025), and WinEdt (WinEdt,
2025) are offline LaTeX editors that offer greater control over document structure
and output, which can benefit screen reader users in some cases. These editors
may allow more customized navigation and speech output compared to web-
based alternatives. However, they typically require users to:

• Install a LaTeX distribution such as MiKTeX or TeX Live manually
• Configure the editor for accessibility
• Navigate local file systems and manage document compilation manually

Because of these technical requirements, these tools are better suited to users
with prior experience or strong support systems.

Visual Studio Code (Visual Studio Code, 2025), when paired with the LaTeX
Workshop extension, offers a powerful and flexible environment for writing LaTeX.
With the right configuration, it can work well with screen readers and supports
user-defined shortcuts and settings. However, this setup is generally
recommended for advanced users, as it demands a high degree of computer
literacy and the ability to troubleshoot and maintain a custom workflow
independently.

Markdown with MathJax or KaTeX
In more lightweight or web-based environments, blind students sometimes use
Markdown (Markdown Guide, 2025) with embedded LaTeX-style math
(rendered via MathJax or KaTeX). This allows:

• Authoring math in plain text
• Dynamic rendering in screen-reader friendly formats
• Use within LMSs or shared notes systems
• Platforms like Notion (Notion, 2025), HackMD (Markdown Guide,

2025), and some learning platforms support this method.
• Emacs (GNU, 2025) with AUCTeX and Speech Extensions

Advanced users sometimes use Emacs with speech output extensions (like
Emacspeak), offering full control over LaTeX writing and reading. However, this
solution is extremely niche and requires a steep learning curve.

Usage Trends
Overleaf is used in Europe, North America, and parts of Asia in academic
contexts. It's less common in secondary education or in countries where LaTeX
is not part of the academic tradition.

In resource-limited environments or early education, students are more likely
to use plain text, email, or dictation methods rather than formal math
authoring tools.

37

Among blind university students in math or physics, LaTeX (often via Overleaf)
is the most standardized and empowering tool available – but its accessibility
depends on prior training and institutional support.

4.6 Mobile math authoring tools and Audio-Based
Math Input systems

While desktop tools like Overleaf or Maple are widely used in structured
academic settings, mobile authoring and audio-driven math entry are
becoming increasingly relevant - especially for blind students who need to take
quick notes, participate in class, or study on the go. These tools aim to reduce
friction by leveraging touch, voice, and simplified syntax.

4.6.1 Audio-Based Math Entry Systems

Dictation to LaTeX/Math Notation. Some apps and voice systems allow users to
dictate mathematical expressions, which are then converted into LaTeX, MathML,
or rendered as visual math notation.

EquatIO (Voice Input Mode)
Allows dictation of math expressions using plain English (e.g., "x squared plus
three x plus two") which the app translates into structured math.

Integrates with Google Docs and Chrome. Output can be read by screen
readers or exported as LaTeX.

4.7 Writing Math as a Blind Student: An International
Perspective

Blind and visually impaired students encounter many of the same structural
barriers as those documented in the Danish context. However, the ways in
which they write and access mathematics vary significantly depending on
regional infrastructure, available assistive technology, institutional support,
and educational philosophy. There is no single method that works for all;
rather, students piece together workflows using a patchwork of tools and
strategies.

4.7.1 Text-Based Input

In higher education - particularly in mathematics-heavy fields - many blind
students use LaTeX to write mathematics. This method provides precise
control over mathematical notation, works well with screen readers and braille
displays, and is fully compatible with scientific publishing tools.

For example, a derivative might be written as:

\frac{d}{dx} \left(x^2 + 3x \right)

This format is both semantically clear and screen reader friendly when properly
supported.

38

Alternatively, some students use simplified or ASCII-style math input, especially
in informal contexts like note-taking or messaging. For instance:

d/dx (x^2 + 3x)

While this plain-text approach is easier to type and often sufficient for basic
communication, it lacks the structural detail and semantic richness of LaTeX or
MathML. As a result, it may be less predictable or ambiguous when parsed by
screen readers - particularly in more complex expressions.

In general, LaTeX provides better accessibility and consistency in STEM settings,
while ASCII-style syntax serves as a lightweight alternative where full LaTeX is
impractical.

4.7.2 Accessible Digital Tools and Math Editors

Some modern math editors support screen readers or braille displays to
varying degrees:

EquatIO (Oribi, 2025) allows students to type or speak math aloud, offering
real-time audio feedback and integration with screen readers.

MathML-based environments (used in some LMS systems) can be read aloud
or interpreted with assistive software, especially when rendered properly via
MathJax.

MathCAT, a newer open-source library, is being developed to make math more
accessible across environments by offering improved speech output and
navigation.

In practice, students rely heavily on whether the editor supports keyboard-only
navigation and exposes math as semantic text rather than images.

4.7.3 Braille Displays and Math Braille

Where available, students use refreshable braille displays in combination with
math braille codes. The most widespread standards are:

• Nemeth Code (used in the United States)
• UEB Math (Unified English Braille)
• Marburg (used in parts of Germany)
• Kanji Braille extensions (in some East Asian countries)

However, it's important to stress that no universal math braille system exists,
and many countries lack support entirely. Even where standards exist, they are
not always taught or supported at scale. In multilingual or post-colonial
countries, math braille systems may be underdeveloped or non-standardized.

As such, many students bypass braille math altogether and rely on linear input
or audio-first approaches.

4.7.4 Audio-Based Math Access

In educational settings where braille resources are limited or unavailable, blind
and visually impaired students often rely on screen readers to access

39

mathematical content by their ears. However, conventional screen readers
typically struggle to convey the structure of complex mathematical expressions
accurately. This can lead to significant misunderstandings, especially when
interpreting

• Nested fractions
• Exponents and roots
• Matrices or piecewise functions.

To address these challenges, several regions – particularly the United States –
have developed structured math speech grammars such as MathSpeak and
ClearSpeak (APH, 2022). These systems provide not only verbal equivalents for
mathematical symbols but also emphasize the syntactic relationships between
elements (e.g., "start fraction," "end root"). Such conventions make it easier
for students to follow and mentally reconstruct the expression without visual
cues.

An important recent development in this area is MathCAT, an open-source
library designed to improve how math is spoken and navigated by screen
readers. MathCAT supports both MathML and LaTeX and enables users to
customize speech output, navigate expressions by element, and use structured
reading strategies - offering a major step forward in non-visual math access
(Sorge, 2023).

In parallel, innovative software such as Desmos is pushing boundaries in a
different way. Its auditory graphing features allow users to explore functions
by listening to variations in pitch and tone, with different sound characteristics
representing function values, slope changes, or axis crossings. This sonification
enables students to "hear" the behavior of a graph in real time, supplementing
or replacing visual inspection.

Together, these tools reflect a growing effort to make math not just visible or
tactile, but audible and navigable - supporting a wider range of learners in
gaining meaningful access to mathematical information.

4.7.5 Human Support as Infrastructure

Due to technology gaps, a large number of blind students still rely on
secretaries, interpreters, or support workers to transcribe handwritten work or
translate their input into visual math. This mirrors the Danish findings.

Often, students will dictate math using a spoken shorthand or linear syntax.
Their assistant then types it into a standard format for grading or classroom
display. While this introduces dependency, it is often the most reliable way to
participate in mainstream instruction.

4.7.6 Common Global Barriers

Inaccessibility of math platforms: Many digital learning tools (e.g., Khan
Academy, IXL, or country-specific systems) render math as images or use
inaccessible HTML structures.

40

Lack of trained instructors: Many educators are unfamiliar with screen reader
workflows or alternative math input methods and cannot support their blind
students effectively.

Exam constraints: High-stakes assessments rarely accommodate non-visual
math workflows, which forces students to rely on human intermediaries or
accept partial credit.

VoiceOver + MathPad (iOS)
MathPad (Pcmacstore, 2025) allows VoiceOver users to enter math using
spoken descriptions or Braille screen input. While the app is designed for touch
interface, blind users can navigate and enter math via a Braille display or by
voice.

Output can be exported as LaTeX or MathML. Students can also draw
expressions by hand (which VoiceOver won't interpret but may help low-vision
users).

4.7.7 Braille notetakers

Braille notetakers include devices such as BrailleSense (braillesense, 2025) and
BrailleNote Touch+ (Humanware, 2025). These specialized devices often run
Android-based systems with built-in math editing tools.

Some include Nemeth Braille support or export to LaTeX. Keyboard-based math
input is reliable, but integration with mainstream tools (e.g., Overleaf or Moodle)
can be limited.

4.7.8 Math Solver

Math Solver (Microsoft, 2025) is a popular app available on mobile platforms
(iOS and Android) and by browser.

It is a free app developed by Microsoft that uses AI to solve a wide range of
math problems. It supports arithmetic, algebra, trigonometry, calculus,
statistics, and more. The app can interpret problems typed in by the user,
scanned from handwriting, or captured using the device's camera.

What Can MathSolver Do?
• Solve equations: linear, quadratic, systems of equations, etc.
• Step-by-step explanations: shows how the problem is solved, not just

the final answer.
• Graphing: it can graph functions and equations.
• Handwriting recognition: you can write math problems by hand using

your finger or a stylus.
• Scan math problems: take a photo of a printed or handwritten

problem.
• Multiple languages: supports many languages, including those used in

European and Asian countries.
• Additional learning tools: for example video tutorials and related

concepts.

41

Advantages for visually impaired
• Screen reader compatibility (partial): on Android, it works to some

extent with TalkBack, and on iOS with VoiceOver. Typed input can be
read aloud.

• Keyboard input: students can type math problems using an on-screen
math keyboard, which can be more accessible than handwriting or
scanning.

• Step-by-step output: helps students understand the logic behind the
solution.

Limitations
• Camera-based features are inaccessible: Scanning handwritten or

printed math is not usable by blind users.
• Graphs and visual content: Graphs are not described in alternative text,

making them inaccessible.
• Touch-based navigation and gestures: These can be challenging or

poorly labeled with screen readers.
• No braille support: The app does not integrate with braille displays or

braille math codes like Nemeth or UEB.

Microsoft Math Solver is a powerful tool for sighted students and those with
partial vision who can use screen readers and magnification. However, it is not
fully accessible for blind students, especially those who rely entirely on non-
visual interfaces.

4.7.9 Online platforms accessible

Systime (Systime, 2025), GEOS (Gyldendal, 2025) and Gyldendal (Gyldendal,
2025) are all accessible "enough" for visually impaired students to get a hang
of what is going on. Images, figures and equations may seem a bit "strange",
with a small alt-text or accessible with a small amount of help from a secretary.

4.7.10 Challenges

While mobile and voice-based math tools offer increased flexibility for blind and
visually impaired students, they also come with significant limitations – especially
in educational settings where precision and structure are essential. The following
outlines key challenges:

Known Challenges with Speech-to-Math Systems
• Accuracy declines with complexity: Voice recognition systems often

struggle with nested structures like fractions within square roots or
piecewise functions.

• Screen readers lack structure: Even when math is successfully transcribed,
screen readers may not present the output in a way that clearly
communicates the math’s structure, requiring manual verification by the
user.

• Spoken math syntax is unintuitive: Users must learn specific verbal
conventions such as "start fraction," "left parenthesis," or "end exponent."
This learning curve can slow adoption, especially among beginners.

42

Challenges with Mobile Math Authoring Tools

• Notability (Notability, 2025) and GoodNotes (Goodnotes, 2025), with
VoiceOver:
 These apps are primarily used for note-taking and audio recording.
Students with residual vision or strong auditory skills may

o Annotate accessible math PDFs
o Pair voice labels with handwritten notes
o Use braille displays for navigation. However, these apps are not

optimized for entering structured math, and lack formal math
support like LaTeX or MathML compatibility.

• Overleaf Mobile (web version):
 Although the Overleaf platform can be accessed via mobile browsers with
screen readers like VoiceOver or TalkBack, small screen sizes and limited
layout control make it difficult to edit longer LaTeX documents efficiently.
LaTeX input via Bluetooth keyboards or braille displays is possible but not
always practical.

• MathML-Compatible Editors (experimental):
A few mobile tools - such as some LMS apps or e-book readers - allow
limited MathML or MathJax rendering. These apps might support
commenting or basic editing of math content. However, they are currently
inconsistent in accessibility and rarely support full math authoring
workflows.

4.7.11 Practical Use in Education

Mobile math tools are primarily used for informal or support tasks: note-
taking, drafts, collaboration, and checking solutions.

Voice-based entry is popular for dictating quick equations during tutoring
sessions or when solving homework with assistance.

Students typically do not use these tools to submit formal math assignments,
due to formatting limitations or lack of compatibility with institutional
platforms.

4.8 Conclusions
This has shown that blind and visually impaired students in Denmark, like their
international peers, face persistent structural barriers when writing and
accessing mathematics – particularly due to inaccessible educational platforms,
reliance on human intermediaries, and the visual nature of math instruction.

Despite these challenges, students demonstrate resilience and creativity in
adapting tools and workflows to their needs, often combining screen readers,
text-based input methods (such as LaTeX), and selective use of accessible
technologies like Maple or Desmos.

Solutions most useful at present include accessible, text-based tools such as
Maple (in upper secondary and higher education), LaTeX workflows (especially
via Overleaf), and audio-enhanced environments like Desmos, which can

43

sonify graphs for non-visual interpretation. Screen reader-compatible
calculators, braille displays, and the structured use of Word or plain-text math
syntax also continue to be valuable, particularly when supported by trained
assistants who can bridge gaps in accessibility.

For future development, organizations should monitor the progress of tools
that can read math out loud; completely accessible (like MathCAT) as well as
evolving standards for MathML and improved ARIA practices in learning
management systems. Additionally, the emergence of speech-to-math
systems, more robust mobile math editors, and AI-supported tutoring tools like
Microsoft Math Solver should be followed closely – especially as these tools
become more integrated with assistive technologies.

Further research is needed to systematically evaluate the effectiveness and
user experiences of newer math accessibility tools across different age groups
and educational levels. There is also a need for longitudinal studies that
examine how early exposure to accessible math tools impacts later academic
and career outcomes for blind students. Finally, the role of institutional
practices – such as teacher training and exam accommodations – should be
explored further, as these social and procedural factors are often just as critical
as the technology itself.

44

5. Calculators and graph
programs
by Marthe Gjelstad and J. M. Kvile

5.1 Introduction
In this study different calculators and graph programs have been investigated
with the aim to answer the following research question: “Calculators and graph
programs – what are available and how accessible are they with keyboard and
screen reader?”

The following programs were tested on a Windows machine with NVDA as
screen reader: GeoGebra graphing, GeoGebra CAS1, Desmos and Microsoft
Excel. The app SenseMath was tested on an iPhone 12 mini, and the Desmos
Graphing Calculator app was tested both on an iPhone 12 mini and on an iPad
Air. The apps were tested together with VoiceOver. In addition, some
information about the proof assistant Isabelle is included, as well as some
information about the program Maple. More information about Maple can be
found in section 4.3.1.

5.2 GeoGebra
GeoGebra is a mathematics software where you can work with geometry,
algebra, spreadsheets, graphing, statistics and calculus (What is GeoGebra?,
n.d.). In this study the graphing tool and the CAS program have been tested.
They were tested in a portable desktop program, GeoGebra Classic 6 for the
graphing tool and GeoGebra CAS for CAS, downloaded from GeoGebra
Calculators and Apps - Free Downloads - GeoGebra. They were also tested in
Google Chrome on the webpage Calculator Suite - GeoGebra. Chrome was used
as browser based on the instructions from GeoGebra (Accessibility, n.d.). The
examples and results described in this report are based on the English versions,
but they work almost the same in Norwegian. It is also possible to choose
Swedish, Danish, Finnish and Icelandic as language.

5.2.1 GeoGebra Graphing

GeoGebra Graphing is used a lot in Norwegian secondary education. It is also
one of the most used graph programs in Denmark.

To test the graphing tool some simple tasks were done:

1. Write a function, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 1, and draw the graph.

2. Write the expression of a straight line, 𝑥𝑥 = 2.

1 CAS is an abbreviation for Computer Algebra System, i.e. mathematical software with the
ability to manipulate mathematical expressions in a way similar to the traditional manual
computations of mathematicians and scientists.

https://www.geogebra.org/download
https://www.geogebra.org/download
https://www.geogebra.org/calculator

45

3. Find the intersection point between the graph and the line.

4. Find the derivative of the function from item 1.

All these are typical tasks students are asked to do the first year in Norwegian
upper secondary education.

When entering the algebra field in GeoGebra, the screen reader speaks: “enter
your equation or expression here”. To write an expression, type the expression
and press enter. For the function 𝑓𝑓 the expression was read “f, x, equals, x 2,
plus 1”. In other words, it was not clarified that the number 2 is an exponent.

To find intersections between objects, type “intersect”, and a menu will appear.
The screen reader speaks the word “intersect”, but if you use the up and down
arrows to navigate in the menu, it only says “blank” for the different options.
This makes it impossible to choose the right command if you can’t see the
different options in the menu. To find the derivative of f, you can write
“derivative”. Again, a menu shows up, but the different options are just “blanks”.

You can use “tab” and “shift + tab” to go back to an expression/input field. When
you reach an input field, the screen reader speaks the name of the function/line
followed by “press slash to hide object, press enter to edit, press tab to select
controls”. If you press enter, the expression is read, and you can edit the
expression. When going back to the line where the derivative of 𝑓𝑓 was
calculated, the screen reader speaks “function f prime”. However, if you enter
the expression, the value of the expression is not spoken.

It is difficult to use the keyboard and a screen reader to navigate in GeoGebra. If
you are at an expression in the algebra field and accidentally press “delete” or
“backslash”, the expression is deleted without a warning. In addition, both in the
desktop program and in the online version there are menus that are not possible
to reach with the keyboard, and menus that are difficult to navigate in.

5.2.2 GeoGebra CAS

With the CAS calculator in GeoGebra you can solve equations, systems of
equations and calculate both numeric and algebraic expressions among other
things. The portable desktop version and the online version in Chrome were
identical2. To test the calculator two simple tasks were done:

1. Simplify the expression 𝑎𝑎 + 𝑎𝑎.

2. Solve the equation 𝑥𝑥2 = 2.

To simplify an expression, you write the expression and press enter. To solve an
equation, type “solve”, and a menu will appear. Since the example in this study
was an equation with one unknown 𝑥𝑥, the option “Solve(Equation in x)” was
chosen. Like in GeoGebra’s graphing tool, the different options in the menu were
just spoken as “blanks”. It is also possible to write “Solve(x^(2)=2)” and press
“enter” to solve the equation directly. To hear the answers of the simplification
and the equation, you need to tab back to the line with the expression, press

2 There is a CAS editor in the desktop program GeoGebra classic 6, but this was impossible
to use with the keyboard and a screen reader.

46

enter and then “shift + F4”. Then the answer is written on a new line and spoken
out loud. The solution can be copied with "ctrl + a", "ctrl + c", and the solution is
presented in a linear text form: "{x=-sqrt(2),x=sqrt(2)}".

Like in the graphing tool, it is difficult to navigate with the keyboard.

5.3 Desmos
In Desmos, the graphing tool was tested, which is one of the most used graph
programs in Denmark. The program was tested both in Google Chrome and
Firefox. There is no CAS in Desmos.

The testing was done with the language set to English both in Desmos and NVDA.
In Desmos, it is possible to choose all the Nordic languages as language.
However, this is not working well in Norwegian. When choosing Norwegian as
language in Desmos, some buttons/menus switch to Norwegian, while some
remain in English. The expressions are also still in English. So, with NVDA set to
Norwegian, the Norwegian voice tries to read the English version of the
expressions.

In Desmos the expression for the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 1 was read by the screen
reader as “f, left parenthesis, x, right parenthesis, equals, x squared plus 1”. So,
in contrast to GeoGebra, here the exponent was spoken correctly. After
entering an expression and the screen reader has read it out loud, it continues
to tell you that you can press “alt + t” if you want to go to “audio trace”. In audio
trace you can hear the graph of an expression.

To find the points of intersection between the graph and the straight line 𝑥𝑥 = 2,
you must go back to one of the expressions. In this test 𝑓𝑓 was chosen. If you
press “alt + t” you reach “audio trace”, where you can listen to the graph. You
can use the left and right arrow keys to move along the graph. If you reach a
point of intersection, the coordinates are spoken. You can also use “tab” and
“shift + tab” to move between points of interest.

To find the derivative of f, you can write 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑓𝑓(𝑥𝑥)� or 𝑓𝑓′(𝑥𝑥). The graph of the

derivative appears, which you can explore with audio trace, but the expression
for the derivative is not visible.

One of the most important features of Desmos related to accessibility is the
audio trace. To both start and end audio trace of a graph you press “alt + t”.
Changes in the stereo field reflect the value of the independent variable, and the
pitch reflects the dependent variable. When the dependent variable is negative,
a buzzing sound is heard. It is easy to change settings like volume and speed
(Desmos accessibility, n.d.).

In general, Desmos is easy to use, and to navigate you can just use, tab, shift +
tab, enter, escape and the arrows. You can reach all the menus with the
keyboard.

5.3.1 Desmos app

There is also an app for the Desmos Graphing Calculator. For this report the app
was tested on an iPad Air (iPadOS 18.3.2) and on an iPhone 12 mini (iOS 18.3.2)

47

with VoiceOver. The testing was done in English and Norwegian, meaning that
both the operating system and the Desmos app were set to the same language.
On an iPhone it is not possible to change the language in the Desmos app.
Therefore, the testing was only done in English on this device.

With the language set to Norwegian, the app is not working well. Some
buttons/menus are in English, while some are in Norwegian. Also, both the
Norwegian voice in VoiceOver and the English voice in the Desmos app are
talking, which is confusing.

With the language set to English, things are working better. All buttons/menus
are in English, and the expressions are read out correctly. However, it can be
difficult to use the keyboard with touch for a blind user. Desmos recommends
using a Bluetooth Keyboard (Desmos accessibility, n.d.).

To conclude, to use the Desmos app, you need to set your device/operating
system to English.

5.4 SenseMath
SenseMath is an app for iPhone where you can enter expressions for functions,
and the expressions are displayed visually, in speech and in braille (SenseMath -
Making Sense of Math, n.d.). For this study only the visual and the speech
representations were tested. The app is designed to be used together with
VoiceOver. It makes you get a quick overview of a graph by representing it with
sound. The testing of SenseMath was done on an iPhone 12 mini with iOS 18.3.2,
where the language was set to Norwegian. The language in SenseMath is English.

To write an expression and listen to its graph you press the plus sign in the top
right corner. “add button” is spoken when you press the plus sign. Below the
heading “functions” you can add the expression for a graph. If you press the
“explanation button”, you get information about the look of the keyboard, for
example that the numbers are on the right side, while functions like “sine” are
on the left side. All information is read out loud. When you have written all your
expressions, you press “done” in the top right corner. Then, to hear the graphs
you press play, and the sound of the different graphs are played in order. You
can choose what you want to hear, for example, if you want to hear points of
intersection for graphs or not.

Since the operating system and the SenseMath app were set to different
languages, both languages were spoken during the testing. For example, the
buttons on the keyboard were spoken in Norwegian, like “fem” for the number
5, while most of the information, like the look of the keyboard was in English.
This is not a big issue because in contrast to the Desmos app, the Norwegian and
English voice are not talking at the same time. However, when not in “edit”
mode, the mathematical expressions are spoken by VoiceOver in Norwegian,
which is not good. For example, the expression 𝑦𝑦 = 𝑥𝑥 + 12 is read as “y er lik x
minus kvadratrot pluss 1”. While in “edit” mode, the expressions are spoken in
English, which is correct, but not perfect. For example, 𝑥𝑥2 + 1 is spoken as “x
caret 2 plus 1” instead of for example “x squared plus 1”.

48

To use SenseMath you should be familiar with VoiceOver. Since it is an app you
can have on your phone, it is a great tool to use when you just want to get an
overview of the shape of a graph. All buttons and information are read out loud.

5.5 Microsoft Excel
In Microsoft Excel general accessibility was tested. The program was only tested
in Norwegian, but it exists for all the Nordic languages. The program has many
different keyboard shortcuts, see for example Microsoft’s page about shortcuts
in Excel (Keyboard shortcuts in Excel, n.d.). With many different available
shortcuts, it needs practice to use them.

In general, the main menu bar at the top can for example be reached by pressing
“alt + h”. Then you get to the home menu. To go into the menu, simply use the
down arrow key. To navigate in the menu, use tab or the arrows. The menu is
divided into different blocks, like “clipboard”. When you enter a block, the name
is spoken. Every button is spoken with a description of what the button does. If
a button contains a dropdown menu, press “alt + down arrow” to open the menu
and use the arrows to navigate in the menu.

To summarize, Microsoft Excel is usable with screen reader and keyboard, but it
requires practice to become familiar with the various shortcuts and to get used
to working in the program.

5.6 Maple
Maple is mathematics toolbox. In the program you can do simple numeric and
algebraic calculations, but you can also work with integrals, differential
equations and matrices. In the program you can also make different plots, like
making a 3D plot of a two-variable function (Maple, n.d.; Maplesoft, 2025). See
section 4.3 for more detailed information.

5.7 Isabelle Proof Assistant
Isabelle Proof Assistant (Technische Universität München, 2025) is a computer
program that helps the user define concepts and prove properties about them
in mathematics and computer science. Among other things, Isabelle checks
whether a proof is constructed correctly and conducts some parts of the proof
automatically (Schlichtkrull, 2018). Due to time constraints related to this
project, the program has not been tested. Therefore, it needs further
examination, especially related to accessibility.

5.8 Conclusion
To conclude, Desmos seems like the preferable graphing program. It is easy to
use with the keyboard and a screen reader. Also, the audio trace functionality is
working well and is a good tool if you can’t see a graph. GeoGebra has a lot of
different functions, and it is a useful tool if you can use the mouse to navigate.
However, it is difficult to use with only the keyboard and a screen reader. The

49

app SenseMath is a quick tool to use when you just want to get an overview of
how a graph sounds.

The Desmos app is not working well if the operating system is not set to English.
This makes it cumbersome to use, since you must change the language of your
device to English for the app to work properly. Also, GeoGebra has a lot of
interesting functionality, but the accessibility needs further development.
Isabelle seems like an interesting tool, but it needs to be tested and examined
further, especially related to accessibility.

50

6. Multiline tactile displays
by Tim Arborealis Lötberg

6.1 Introduction
Multiline tactile displays are devices containing a display composed of pins
raised through holes in a flat surface. These fall into three general categories:

1. Devices that are primarily designed to display multiline braille. Just as
in a regular one-line braille display, these can form braille characters
that refresh into text in focus on a device through a screen reader (or
an onboard UX). These can only display tactile graphics to a very limited
extent.

2. Devices that are primarily designed to display tactile graphics and
where the pins are designed and positioned in a way which is not
optimal for braille.

3. Devices that are designed to display both multiline braille and tactile
graphics.

Though the technology has only been available for commercial use for about
five years, several different models have currently been developed. In this
review we have focused on the ones which are available for purchase or
released for extended user testing. These include

• Cadence (category 1)
• Canute 360 (1)
• Dot Pad 320 (3)
• Graphiti and Graphiti Plus (2)
• Monarch (3)
• Tactonom Pro (3).

The displays can be used connected to a device such as a PC or smartphone,
and a few (Graphiti Plus and Monarch) can also function as stand-alone
devices.

Note that this review focuses on giving an overview of what devices are
available and what features they are claimed to have. Systematic testing of the
displays falls outside the scope. Therefore, no conclusions can be drawn
concerning how well they work in conjunction with our agencies’ products and
services.

6.2 Overall comparison
Characteristics and basic features of the devices are compared in the table
below, followed by sections with a more detailed list of features for each
respective display.

Number of pins conveys the size of the display.

51

All prices have been converted into EUR for comparison, using the exchange
rates by 2025-04-17 and rounded to the nearest 10.

Weight gives an indication of how portable the device is.

Variable pin height asserts whether the pins can be partly raised. This opens
the possibility for nuances in tactile images to convey e.g. colour.

Zooming means the possibility to investigate part of a graphic in greater detail
directly from the device.

Drawing means the possibility to create tactile drawings directly on the display.

Cursor manipulation means the possibility to adjust the area in focus directly
from the display.
Table 1 Comparison overview of multiline tactile displays. Information on price, weight and zooming is
missing for Cadence because Tactile Engineering has not responded to enquiries.

Device Number
of pins

Price
(€)

Weight
(Kg)

Variable
pin

height
Zooming Drawing

Cursor
manipu-

lation

Cadence 384 ? ? No ? No Yes

Canute 360 2,160 3,830 2.8 No No No Yes

Dot Pad 320 2,4003 8,660 1.2 No No4 No5 No

Graphiti 2,400 13,170 3.7 Yes Yes Yes No

Graphiti Plus 2,4006 15,810 4.2 Yes Yes Yes Yes7

Monarch 3,840 15,730 2.1 No Yes No8 Yes9

Tactonom Pro 10,472 12,000 12 No Yes No10 Yes11

6.3 Cadence
The Cadence (Tactile Engineering, 2025) is developed in the USA. It has a
display of 384 pins (corresponding to 4 rows of 12 braille cells, equally spaced
vertically but not horizontally), making it comparable in size to a large
smartphone. The pins are spaced primarily for braille rather than graphics. It

3 Plus an additional line of 20 braille cells.
4 Possible to a limited extent, see section 6.5.
5 Possible on external device via drawing app.
6 Plus an additional line of 20 braille cells.
7 Single line only.
8 Not at present, see section 6.7.
9 Touch.
10 Not at present, see section 6.8.
11 Optical recognition of finger position.

52

can be connected to a PC or a mobile unit via USB or Bluetooth. Up to four
units can be connected to form a larger screen.

Features include:

• Possible to read while the display is reimaging without interfering with
the pin pattern, meaning that dynamic changes can be followed in real-
time.

• 4-key Perkins keyboard (meaning that 2 connected devices are needed
for typing).

• Several days of battery life during heavy use.

6.4 Canute 360
The Canute 360 (Bristol Braille Technology, 2025) is developed in the UK. It has
a display of 2160 pins, corresponding to 9 lines of 40 braille cells. There is
spacing without pins between the braille lines. Graphics shown are constructed
from sets of full braille cells via a custom format, meaning they show up as
they would having been embossed on paper. It can be connected to a PC via
USB or HDMI. It is portable, comparable in size and weight to a laptop
computer.

Features include:

• Supports all pre-formatted Braille files, such as BRF and PEF.
• Can be used as a stand-alone device to read books directly from a USB

drive or SD card.
• Compatible with all OS that run BRLTTYY, including Windows, Linux and

Mac.
• Compatible with Narrator and NVDA.

6.5 Dot Pad
The Dot Pad 320 (Dotincorp, 2025) is developed in Korea. It has a display of
2400 pins, corresponding to 300 braille cells, making it suitable for tactile
graphics as well as multiline braille. It also has an additional 20 cell text braille
display below the main screen. It can be connected to a PC, tablet or phone via
Wi-Fi, USB or Bluetooth. It is portable, size and weight comparable to a
lightweight laptop computer.

Features include:

• Zooming is possible to a certain extent via VoiceOver but must be
prepared in the images. Not possible directly from the image viewing
tool.

• Handles formats PDF and DAISY as well as a variety of image formats
such as JPEG, PNG and TIFF.

• It comes with an app for iPad and a web app for creating presentations
with tactile images and text.

53

• Instant conversion of images of any format to line drawings via internal
format SDK. This means that it’s possible to draw on e.g. a tablet and
see the result on the Dot Pad in real time.

• Compatible with VoiceOver and NVDA. JAWS support is currently in
beta testing.

6.6 Graphiti
The Graphiti (Orbit Research, 2025) and Graphiti Plus (Orbit Research, 2025)
are developed in the USA. They have a display of 2400 pins. The pins are bigger
than braille dots typically are, meaning that braille on the screen could be
difficult to read. The Graphiti plus, however, has an additional 20 cell text
braille display below the main screen. Both devices can be connected to a PC,
tablet or phone via HDMI, USB or Bluetooth. Graphiti plus can also be used as a
stand-alone device. They are both portable, comparable in size and weight to a
heavier laptop computer.

Features include:

• Variable pin height, e.g. for showing different colours as different
textures.

• Possible to zoom and pan in tactile graphics.
• Possible to draw directly on the display and save in a visual output

format.
• Possible to read while the display is reimaging without interfering with

the pin pattern, meaning that dynamic changes can be followed in real-
time.

• Possible to use the tactile display as a touch screen for a connected
device.

• Provides haptic output.
• Can read directly from USB drive or SD card.
• 6-key Perkins keyboard (8-key for Plus).
• Built-in TTS (Plus).
• Built-in apps including book-reader, note-taker, calculator and Braille

translation in 40+ languages (Plus).

6.7 Monarch
The Monarch (APH, 2025) is developed by HumanWare in collaboration with
American Printing House for the Blind (APH) in the USA. It has a display of 3840
pins, corresponding to 10 rows of 32 braille cells, making it suitable for tactile
graphics as well as multiline braille. It can be connected to a PC via Wi-Fi, USB
or Bluetooth but can also be used as a stand-alone device with built-in
applications. It is portable, comparable in size and weight to a laptop
computer.

Features include:

• Possible to zoom and pan in tactile graphics.

54

• Handles a variety of formats, including EPUB, DAISY, JPG, PNG, PDF,
BRF and PEF.

• > 20 hours of battery life during active use.
• Built-in TTS that can read MathML aloud.
• Cursor manipulation by touch directly on the display.
• Customisable spacing between braille lines.
• Built-in apps include graphic calculator, tactile graphics viewer and

word processor.
• 8-key Perkins style keyboard.
• Possible to connect directly to accessible book libraries and APH:s

tactile graphics library (APH, 2025).
• Possible to write math in braille (Nemeth, UEB and French currently

supported) and output in visual formats.
• An app for creating tactile drawings for Monarch is currently in beta

testing.

6.8 Tactonom Pro
The Tactonom Pro (Tactonom, 2025) is developed by Inventivio in Germany. It
has a display of 10 472 pins, corresponding to 22 lines of 40 braille cells. It is
designed to function as a stationary tactile display to a PC and connects via
HDMI. Only Windows is currently supported but support for all operating
systems is on the roadmap. A camera is mounted above the display which can
track finger position.

Features include:

• Can read all formats which a PC can handle. Automatic conversion of
images which are not already in a tactile format.

• Possible to zoom and pan in tactile graphics.
• Reading math in braille (currently only Nemeth supported).
• Compatible with NVDA (JAWS support is on the roadmap).
• There is hardware support for drawing directly on the display via the

camera, but no app has been developed for it yet.
• Direct access to thousands of tactile graphics in the ProBlind database

(ProBlind, 2025). Automatic translation of the text in all graphics is
available to many languages.

6.9 Future development
Multiline and dynamic tactile displays open up possibilities for tactile
interaction with STEM content in a groundbreaking way. However, the
technology is expensive (comparable to the price of the first refreshable braille
displays in the 1980’s), which in itself can be an accessibility issue. In the
Nordic countries, braille readers may be prescribed a braille display if it is
classified as aid equipment and would then not have to bear the cost
themselves. Multiline devices are not, however, classified as aid equipment at

55

present. In terms of resources, the cost of a device should also be compared to
production of printed braille books and tactile graphics.

Research is underway to develop more effective actuator technology, meaning
that fewer components would be required to move a certain number of pins.
This will make it possible to create cheaper displays where the cost does not
scale with size. One such initiative is the EU project ABILITY (ABILITY, 2025),
where ultrasonic vibrations from just a few transducers is used to activate pins
remotely. Another example of alternative actuator technology use is the
Tactonom Pro, which despite its remarkably large screen is cheaper than e.g.
the Monarch and Graphiti Plus.

An example of an affordable analogue solution is the BrailleDoodle (TouchPad
Pro Foundation, 2025). It is a tablet where the pins consist of stainless-steel
ball bearings that can be raised or lowered with a magnetic stylus. One side is
for drawing with the stylus on a grid of 1 033 balls, while the other side is for
practicing the braille alphabet with fixed letters to read and copy. Costing 170
€, it is made to be significantly more affordable than its digital counterparts
while still useful for a variety of classroom activities.

An important aspect of usability of multiline devices is screen reader support.
Work is already underway to support multiline and dynamic tactile devices
with screen reader integration. NVDA has since been the first screen reader to
offer functional support (GitHub, 2025). The 2025 CSUN conference marked a
milestone, with all major screen reader developers showing a commitment to
supporting multiline and tactile displays.

What will reading tactile images be like in the future? Currently the multiline
displays have different ways of translating and rendering images into a tactile
format. Some take regular image formats such as JPEG or PNG and translate on
the fly via an internal format. These graphics will be of unpredictable quality
since they have not necessarily been prepared for tactile viewing.

The SVG format supports scripting information about e.g. tactile presentation
and interactivity into a digital image (W3C, 2025). The EPUB format in turn
supports the inclusion of scripted SVG (W3C, 2025). This means that in theory,
tactile and interactive graphics could be embedded in an e-book and be
accessible directly through a multiline tactile display. However, a standard
doesn’t necessarily imply that full hardware and software support exists. In
practice, the parts have yet to be fitted into a cohesive solution and tested by
users.

It should also be kept in mind that while the technology matures and multiline
tactile displays might become more affordable, they can’t necessarily replace
traditional techniques such as swell paper or embossing for all purposes.
Regardless of medium, tactile image production will be dependent on
standards and recommendations. MTM and SPSM will carry out a study during
2025 with the aim of describing and analysing knowledge about tactile images
for the purpose of producing up-to-date recommendations (MTM, 2025).
Further on, user-focused studies will be required to shed light on how the
analogue and digital technologies might complement one another.

56

6.10 Conclusions
Multiline tactile displays can do quite a lot of things, depending to some extent
on how graphics files have been prepared. Features and performance vary
between models, but all can be used to access digital STEM graphics in a tactile
way. Monarch, Dotpad, Graphiti, Tactonom & Cadence all seem good for this
purpose. Canute doesn’t come close in resolution but could be sufficient for
bar charts and very basic graphs or geometry. Monarch and Tactonom Pro, on
the other hand, stand out in terms of resolution because of their large displays.

Both Graphiti models and Cadence allow for dynamic viewing since the display
can be read while the pins are rearranging. The resolution of the graphics will
be lower on the Cadence because of the spacing of the pins, while the Graphiti
models allow for an additional layer of nuance since the pins have variable
height.

For creating content, the Graphiti models and the analogue BrailleDoodle (and
in the future the Tactonom Pro) stand out with the ability to draw directly on
the display.

While all displays except the Tactonom Pro are portable, Cadence stands out
especially for being small enough to fit in a pocket. Graphiti Plus and Monarch
also stand out in terms of portability since they can be used as stand-alone
devices. Tactonom Pro, while being stationary, is designed to display anything
that a computer can do, meaning that the user won’t be locked into any
developer-specific apps.

Overall, Graphiti Plus and Monarch seem to be the most versatile, but also the
most expensive displays. In a stationary setting, the Tactonom Pro offers many
of the same features for a lower price.

57

7. Graphs and diagrams
By Tim Arborealis Lötberg

Graphs and diagrams are an integral part of many STEM fields. A heavy reliance
on visual representation is often necessary, which leads to accessibility
challenges. As new technologies emerge, the possibility for multi-modal
representation of graphic content opens up. Examples include image
descriptions, tactile images, sonification and haptics. In this review we take a
broad perspective and list a selection of solutions and projects as examples of
what is possible. Testing and evaluating solutions for specific purposes falls
outside the scope.

7.1 Image descriptions
Image descriptions are often essential for making graphic STEM content
accessible. When the user doesn’t have vision as a means to take in the big
picture or small details, an image description provides an overview which
facilitates orientation and understanding of what is being presented. This is
essential also in combination with alternative modalities such as sound and
haptics.

7.1.1 Poet

Poet (DIAGRAM Center, 2025) is a web-based image description resource. The
idea is to help people learn when and how to describe images frequently found
in educational books. The tool includes best practice guidelines as well as
exercises. It is developed by the DIAGRAM Center
(Digital Image And Graphic Resources for Accessible Materials), an initiative by
Benetech.

7.1.2 Seeing AI

Seeing AI (Seeing AI, 2025) is a free app which narrates the surroundings as
seen through a mobile phone’s camera. It is one of many similar solutions for
auto-generated image description, whose proficiency is accelerating (DAISY,
2025).

7.2 Haptics
Haptics is the technology of vibrational feedback. In STEM contexts, it can for
example be used to explore scatterplots on a touchscreen, where a higher
intensity of vibrations corresponds to a higher density of data points.

7.2.1 Multimodal Digital Graphics on Touchscreens

Multimodal Digital Graphics on Touchscreens (CHROME Lab, 2025) is a
research project which explores how vibrations and additional multisensory

58

feedback can be used to enhance the accessibility and usability of
touchscreens, particularly in visual content such as graphics.

7.3 Sonification
Sonification is the use of non-speech sound in an intentional, systematic way to
represent information (Walker & Nees, 2011). For example, the pitch of a tone
can be mapped onto the value on the y-axis of a graph, or tempo can be
mapped onto data representing speed. Sound can also be used in many other
ways in STEM simulations. The technology has been around for decades
(Pollack & Ficks, 1954) and new implementations continue to emerge. A couple
of solutions for student use are listed below:

7.3.1 Astronify

Astronify (Astronify, 2025) is a Python package for sonification of astronomical
data.

7.3.2 SenseMath

Sensemath (Q42, 2025) is an iOS app for sonification of graphs, developed by
Q42 in collaboration with Royal Visio. This app is discussed in detail in section
5.4.

7.4 Tactile images
Tactile images are raised-line or textured representations of graphic content
accessible by touch. Traditional techniques include embossing,
thermoforming, swell-paper printing, 3D printing, laser etching and different
collage techniques. Multiline tactile displays (see section 6) open up the
possibility for accessing digital images in a tactile way directly.

7.4.1 Blind SVG

Blind SVG (Blind SVG, 2025) is a resource to help teach BVI persons how to
code their own graphics with SVG.

7.4.2 Dimensions

Dimensions (New York Public Library, 2025) is a set of community tools for
making tactile graphics and objects.

7.4.3 ProBlind

ProBlind (ProBlind, 2025) is a free and open-source database for tactile
graphics.

59

7.4.4 Tactile Vega-Lite

Tactile Vega-Lite (MIT News, 2025) is a system for streamlining the tactile chart
design process. It is developed at MIT CSAIL.

7.5 Other tools and projects
Below are listed a selection of projects and solutions for enhancing and
checking the accessibility of graphics.

7.5.1 Chartability

Chartability (MIT News, 2025) is a set of testable questions for ensuring that
data visualisations, systems, and interfaces are accessible. It is a free open-
source tool.

7.5.2 Data Navigator

Data Navigator (CMU Data Interaction Group, 2025) is a free, open-source tool
for rendering a semantic, navigable structure on top of graphics.

7.5.3 Highcharts

Highcharts (Highcharts, 2025) is a charting library for accessible data
visualisations for web and mobile platforms.

7.5.4 Inclusio

Inclusio (Inclusio Community, 2025) is a project by the National Science
Foundation in the USA. It aims to connect content providers, educators, and
individuals with blindness and low vision through a one-stop shop, saving time
and resources in obtaining high-quality accessible information on multiple
platforms.

7.6 Conclusions
As new technologies develop and mature, more modes open up for
experiencing graphic content than just visually. Sonification, tactile images,
haptics and image descriptions all have great potential in the STEM fields.
Rather than replacing, these techniques complement one another and ideally a
user should have access to several modes of representation.

From the examples above, it is evident that there is a great number of
promising solutions for accessible STEM graphics. However, graphs and
diagrams is a large area, of which this review has only skimmed the surface.
MTM and SPSM are launching a more in-depth overview of knowledge of
tactile images (MTM, 2025) during 2025. This will be used as a basis for future
development and guidelines.

How is the support for interactivity and multi-modal presentation for graphic
content in e-books? The SVG image format has support for embedding multiple

60

layers and modalities of information into it. The EPUB standard supports
embedded SVG (W3C, 2025), but how the information can be accessed in
various reading situations remains to be investigated.12

Lastly, technological development and the development of standards go hand
in hand, as always in accessibility. It is important to adhere to existing
standards, for example Guidelines and Standards for Tactile Graphics
developed by BANA (Braille Authority of North America, 2012). We
recommend that the Nordic agencies take an active part in following both the
development of technology and standards so that our users will get access to
the cutting-edge of accessible books.

12 The eBraille project (The DAISY Consortium, 2025) is currently looking into this.

61

8. Programming interfaces
By Lars Henrik Johansen

8.1 General considerations

8.1.1 Definitions

This section deals with the accessibility of programming interfaces, but this
necessitates a clear definition of the expressions ‘programming interface’ and
‘programming’. Firstly, we will limit ourselves to the digital realm, including
neither Joseph Marie Jacquard’s weaving device, nor Microsoft’s Code Jumper
– at least not the tactile part of it. Secondly, we will include interfaces where
the programming language is inseparable from the interface, such as Scratch.
Thirdly, we will focus on interfaces that handle higher level programming,
excluding simulators of electric circuits and similar. Fourthly, we focus on
editors that facilitate programming, in the sense of instructing the computer,
as opposed to markup, in the sense of structuring a document, and hence we
do not include text editors such as Word, but we do include text editors such
as Notepad.

8.1.2 Previous work

Statped in Norway has done work in the field of programming with visual
impairment, and collected considerations and tips on statped.no (Statped,
2025).

In addition to this, Øivind Rønning (senior adviser, Statped) has collected
evaluations about specific programming interfaces in a survey from 2020
onwards (Rønning, coding-without-seeing, 2023).

Not only is this a field developing day by day, but it is also complex in a way
that makes different users focus on different sets of aspects and hence may
come to different sets of conclusions. Some parameters remain relatively
objective: if you cannot read the text, then it does not work. Others are more a
matter of taste and convenience, and Vim, for example, might appear clumsy
to some users, but elegant to others, and any survey, the present text included,
will be biased in some way.

8.2 Evaluation criteria
The evaluation criteria described here serve a double function: they have
guided our testing but are also meant as suggestions for ordering further work
in this field.

8.2.1 Installation and setup

This seemingly simple phase might be the cause of frustrations, sometimes
because the producer’s web site might be less accessible than the actual

62

program, sometimes because computer onto which we want to download the
program might be subject to restrictions by the organization distributing it, and
sometimes because of incommensurability between the program and the
system on which we wish to use it.

8.2.2 Basic navigation

It happens that although the elements that we want to navigate – such as
programming blocks – conceptually might perfectly well be navigable, but that
the program itself – such as Scratch – does not provide navigability for the
navigation method such as a screen reader.

8.2.3 Code editing

Typing, drag-and-drop, tactile input devices and voice controllers are all
relevant code editing methods. However, it happens that the very methods
that render beginner level understanding more efficiently hinder the progress
to higher levels of programming or that an input method is very efficient for an
expert user while too complex for the beginner. This effect is by no means
particular to programming but is very relevant for us in this context and makes
it less obvious how to judge an input method as “good” or “bad”.

8.2.4 Debugging and Error Messages

Coding is a close relative to troubleshooting, and a programming environment
that does not facilitate finding and correcting errors is less useful than one that
does.

8.2.5 Autocomplete and Suggestions

On higher levels, efficiency in programming is highly improved by tools that aid
the completion of specific tasks. These include AI copilots, editor
autocomplete, language servers, predefined snippets and templates, linters,
refactoring tools, shell autocomplete tools, chat services, and different
experimental functions for an Integrated Development Environment (IDE). Since
modern programming integrates these tools in its routine, the accessibility of
them is relevant when summing up on the general accessibility of the IDE to be
evaluated.

8.2.6 Accessibility Settings and Customisation

There are two considerations that are not entirely unrelated: what the user
needs and what the user likes. Often the user would like to have what is
needed, but it not always obvious if a liking is a necessity. High contrast mode,
font and zoom control, screen reader support, customizable keybindings,
speech-to-code and voice commands, error and warning narration, caret and
focus indicators, minimap toggle, distraction-free mode and accessible
extensions are all accessibility aids, but most of them are also subject to taste.

63

8.2.7 Terminal/Console Access

Many programming tasks – from installing packages to compiling code – are
often performed via the terminal, and hence the accessibility of the terminal
might affect the overall accessibility of the programming environment. The
navigability of terminal output is essential for tasks like troubleshooting.

8.2.8 Documentation and Community Support

When we evaluate an IDE, the information ecosystem could be viewed as an
integral part of the product. Accessible documentation in multiple structured
formats and an inclusive, responsive community help the user learn
independently, solve problems quickly, and participate fully in the
programming ecosystem.

8.3 Specific programming interfaces

8.3.1 Jupyter Note-book

Anaconda installs like any desktop program and ships web-based Jupyter Note-
book and JupyterLab (editor, terminal, etc.) that run in a browser. JupyterLab
lets sighted users enable a dark theme, pick alternate editor colour schemes,
and enlarge fonts for the UI, code, and terminal. Moderate magnification,
Windows High-Contrast, and colour-filter modes also work reasonably well.

However, current versions remain poorly accessible to screen-reader users
(NVDA, JAWS, Windows Narrator). In forms/typing mode the arrow keys give
no speech or braille feedback, cursor-movement can drop into virtual/browse
mode unexpectedly, and back-spacing is silent—serious barriers that outweigh
the otherwise solid editing features. Because of these limitations, Jupyter
Note-book/Lab is not recommended for learners who rely on speech or braille
output, though it can suit low-vision students who benefit mainly from visual
customisation.

See (Rønning, Jupyter Notebook og JupyterLab, 2021).

8.3.2 Notepad++

Notepad++ is a free code editor that supports many programming languages
with localisation for the Nordic countries except Iceland (according to the
official list). It works well with screen readers such as JAWS, NVDA, and
SuperNova—though users often need to tweak both the editor (e.g., hide line
numbers, turn off autocompletion) and their screen reader settings for optimal
braille output. Visual users can customise colour themes, dark mode, fonts,
zoom, and hide UI elements to reduce clutter.

Installation is straightforward from notepad-plus-plus.org, but the editor ships
without a built-in console. To run programs (e.g., Python) you must install the
NppExec plugin, create a script that launches the interpreter, and assign a
keyboard shortcut; similar steps apply if you use uflash to program BBC
micro:bit boards.

64

Additional tips include defining a default language and working folder, fixing
Scandinavian characters in the console, and consulting the built-in hot-key
manager. While Notepad++ lacks integrated linting or rich error panels, plugins
or console output can partly fill that gap. Overall, with the right setup it is a
lightweight yet accessible option for both visually impaired and sighted
students.

See (Rønning, NotepadPlusPlus, 2023).

8.3.3 PyCharm

PyCharm Community installs with its own Java runtime (just enable Java Access
Bridge) and supports only Python, plus a micro:bit plug-in. Sighted users get
light/dark themes, red-green colour-blind filters, per-pane colour schemes,
custom fonts and mouse-wheel zoom—though zoom does not affect every
panel.

With NVDA PyCharm is mostly usable, but both NVDA and JAWS lose proper
braille cursor routing; JAWS also drops entire lines from the display after a
backspace. Code-completion pop-ups are unreadable and should be disabled,
while the “Problems” window (Alt + 6) is navigable and returns focus to
offending lines. The Python console gives speech and braille while typing but
no feedback when you move with arrow keys, and the integrated terminal is
effectively silent. All shortcuts are re-mappable via Settings › Keymap, which
helps compensate for these gaps.

See (Rønning, PyCharm, 2022).

8.3.4 Scratch

Scratch’s block-based interface is unusable with screen readers: there are no
keyboard-navigable links, headings, or landmarks, so blind users cannot reach
or identify code blocks. Low-vision learners can manage with moderate
magnification, ZoomText, or colour-enhancement, but results vary, and high-
contrast modes often produce clashing colours or leave parts of the interface
unaffected—especially in the desktop app. In short, Scratch suits sighted
beginners but is not a practical option for students who rely on speech or
braille output.

See (Rønning, Scratch, 2020).

8.3.5 Visual Studio Code

VS Code is a highly customisable, screen-reader-friendly Python editor: you can
zoom the whole UI, switch among high-contrast or dark/light colour themes,
simplify the window with Zen Mode, and navigate almost everything by
keyboard. NVDA, JAWS and VoiceOver read the editor, Problems panel,
explorer tree and command palette well (installing the “Screen Reader Mode”
extension fine-tunes defaults), while audio cues and the Problems list make
finding errors straightforward; however, the integrated terminal still requires
an “Accessible View” workaround or an external console. With Python, Pylint
and other extensions, VS Code becomes a fully-featured yet accessible

65

environment for both low-vision and blind learners—though pointer-
size/colour tweaks must be set in Windows, not in the app itself.

See (Rønning, Visual Studio Code, 2024).

8.3.6 Other editors

The above selection is meant as a glance into different directions of IDE
variants. There are of course many others, and some, like Emacs and Vim
appear particularly usable, particularly with the refreshable braille display.

8.4 Conclusions
The comparative testing above points to Visual Studio Code as the most
universally recommendable environment today: with its extensive screen-
reader support, flexible theming, keyboard-centric workflow and rich
ecosystem of extensions, it accommodates both blind and low-vision
programmers while remaining appealing to sighted peers. Notepad++ is a
strong second choice when a lightweight, Windows-only editor is needed; it
installs easily, behaves predictably with major screen readers once tuned, and
can be extended with plugins such as NppExec to cover basic run-and-test
loops. PyCharm merits consideration for more advanced Python work provided
the user accepts its current braille-display limitations and invests time in
remapping shortcuts and disabling inaccessible pop-ups. By contrast, Jupyter
Note-book/Lab and Scratch should not be recommended to learners who rely
on speech or braille output until their fundamental navigation issues are
resolved, although they remain valuable for sighted or low-vision beginners.
Veteran text-centric tools like Emacs and Vim can be highly effective—
especially in combination with a refreshable braille display—but demand steep
learning curves and were therefore kept outside the core recommendations for
mainstream teaching contexts.

Looking ahead, the field would benefit from systematic, longitudinal studies
that measure real-world productivity across diverse disability profiles rather
than short accessibility checklists. Three gaps are especially pressing: (1)
terminal integration—even in otherwise strong editors, command-line panes
often lag behind the main interface in screen-reader feedback; (2) block-based
and drag-and-drop paradigms—current solutions marginalise blind users, yet
these paradigms dominate early-years curricula; and (3) evaluation of
emerging AI copilots and language-server features—their rapid evolution risks
outpacing accessibility work. Regularly updated test suites, shared
configuration recipes, and closer collaboration with upstream developer teams
will be crucial for maintaining accessible programming pathways as tooling and
pedagogical targets continue to shift.

66

9. Learning platforms
By Evelina Frischenfeldt Bååth

Learning platforms are widely used in an educational context all over the world
today. Yet, their level of accessibility does not cater to every student's needs.

9.1 Introduction to learning platforms
Learning platforms are digital platforms that offer educational content. They
can be either online websites or applications for download, and they are
frequently used in modern education all over the world. In the educational
setting, the term covers both solutions which are more administrative and
organisational, henceforth referred to as learning management systems
(LMS), as well as solutions which are more directly aimed at learners, called
virtual learning environments (VLE). Due to this major difference in target
group, the properties of LMS and VLE differ greatly so for the purpose of
this study, the following definitions of the terms LMS and VLE were
accepted:

1. Learning management systems (LMS): A platform where the school
makes the learning content and controls the system to some extent.
However, most of these platforms are originally created by other
parties, such as companies or organizations, and therefore the
school’s possibilities to influence the platform are limited. For
example, Canvas (Infrastructure, 2025) is a learning management
system used by universities in all Nordic countries. Other examples
are PING PONG (Ping pong, 2025), Unikum (Unikum, 2025), Vklass
(Vklass, 2025) and Moodle (Moodle, 2025).

2. Virtual learning environments (VLE): A platform where the school
does not make the learning content. Also, since these platforms are
not aimed at school management, they typically do not offer tools
for documentation or communication with students or guardians.
These platforms can be made by for example companies, non-profit
organizations, associations or governmental authorities. Examples:
Khan Academy (Khan Academy, 2025), Coursera (Coursera, 2025),
Skillshare (Skillshare, 2025), Skolon (Skolon, 2025) and Bingel
(Bingel, 2025).

9.2 Background and previous studies
In a world that is becoming more and more dependent on digital tools every
day, so is also the learning system becoming increasingly digitised, including

67

learning platforms. Maidenbaum et al.13 has found that virtual environments
are turning into increasingly central parts of our lives, yet numerous studies14
report that the virtual environments included in these studies were not
accessible for people with visual impairment. Furthermore, several other
studies which have analysed websites specifically prove that a majority of
these sites are not accessible (Armstrong, 2009). This further adds to the digital
divide and, consequently, affects the learning potential for students with visual
impairment. More recent studies15 build their research on a pre-existing
acceptance that virtual learning environments are not accessible and focus
therefore instead on locating the problems and finding solutions.

As welcome as this progress in revealing and amending the issues of
accessibility in virtual learning environments is, the fact that essentially all
school systems today utilize a learning management system needs to also be
addressed. Burke et al.16 states that even courses attended in person have a
digital learning management system which is most likely not accessible for
students with disabilities such as visual impairment. This hypothesis is
strengthened by the fact that people with disabilities are amongst the least
considered when it comes to the educational context of online learning
(Armstrong, 2009).

The transition to more digital, mobile and online learning, has been well on its
way ever since the creation and employment of digital tools but it has
increasingly intensified ever since the start of the green transition which
requires a significant increase in the number of STEM educated people
(Kaufhold & Steinert, 2024). Today, many visually impaired students drop out
of such studies due to obstacles in accessibility17. This might however be
affected by present and future legislation such as the Americans with
Disabilities Act (ADA) or other national counterparts.

Another most compelling factor for the increase of digitalisation in schools was
the covid pandemic which added to the already existing demands of long-
distance learning. Together with the possibilities for BVI students in developing
countries to continue education (Kamaghe, Luhanga, & Kisangiri, 2020), this
sums up to a major demand on LMS and VLE as mobile, online tools for
learning to be more accessible.

13 (Maidenbaum, Levy-Tzedek, Chebat, & Amedi, 2013)

14 See (Gutiérrez Gómez-Calcerrada, Solera Hernández, & García González, 2005); (Park, So,
& Cha, 2019); (Gutiérrez Gómez-Calcerrada, Solera Hernández, & García González, 2005)
and (Nganji & Brayshaw, 2017).

15 See (Kamaghe, Luhanga, & Kisangiri, 2020); (Kaufhold & Steinert, 2024) and (Riley-Ancar,
2022).

16 (Burke, Clapper, & McRae, 2016)

17 See (Kamaghe, Luhanga, & Kisangiri, 2020); (Kaufhold & Steinert, 2024) and (Riley-Ancar,
2022).

68

9.3 Research questions
Since learning platforms are widely used in modern education all over the
world, the question of their accessibility becomes a high priority for all
manners of learning. Yet, despite the increased digitalisation in every instance
from pre-school to higher education, research on the accessibility of learning
platforms seems quite rare based on the number of previous studies found in
the making of this report. Most of these studies were mainly focused on higher
education and online learning18, and no study found was performed in any of
the Nordic countries. However, most of these studies do persistently prove
that learning platforms are not accessible and therefore it becomes essential to
continue with further research on the topic.

The most immediate aspect to study is whether the LMS and VLE used in
Nordic schools today meet the AA level standards of the WCAG 2 (W3C, 2024).
This question would benefit from being studied separately for each level of
schooling, i.e. elementary, high school and university or higher studies, since
such research could offer more precise conclusions and the possibility to
identify potential obstacles in progression between the different levels of
education. Also, a special focus on STEM subjects when researching the
accessibility of VLE would offer further knowledge on the accessibility of VLE
used in STEM education in the Nordic countries specifically.

Another aspect to consider is the question of how well learning platforms
interact with other applications, for example screen readers and conversion
tools, to become more accessible.

9.4 Findings
The proposed research questions have not been investigated within the scoop
of this report. Further research on the accessibility of learning platforms has
therefore yet to be done and in such work, the above defined research
questions offer a foundation for future studying.

However, in preparations of any future research, it has been found that the
lack of access to several existing learning platforms causes a major problem in
the analysis, since most platforms require a paid subscription and/or a school
license.

18 (Hadian & Storey, 2005); (Kamaghe, Luhanga, & Kisangiri, 2020); (Kaufhold & Steinert,
2024); (Ready, 2017) and (Riley-Ancar, 2022).

69

10. Conversion tools
By Tim Arborealis Lötberg

MathML markup has the most potential for accessible math content (The
DAISY Consortium, 2025). Producing high-quality MathML, however, remains a
challenge and few publications today are born containing MathML. There are
several solutions for converting math content from a less accessible format
(image, PDF) to a more accessible format (LaTeX or MathML), a selection of
which are listed below. Note that intended functionality is only mentioned in
brief since evaluating specific solutions falls outside the scope of this review.

10.1 MathKicker
MathKicker (MathKicker, 2025) is a web application using AI to transform
mathematical expressions into an accessible format. It is designed to be used
by blind students for uploading PDFs or images of mathematical documents for
conversion into word or HTML. It also provides a browser-based math editor.

10.2 MathPix
MathPix (MathPix, 2025) is an OCR tool for transforming PDFs and images into
LaTeX or markdown. It handles mathematical content as well as tables and
structural markup such as headings.

10.3 Mistral
Mistral (Mistral, 2025) provides an AI-based OCR tool for transforming PDF and
images into LaTeX or markdown. It handles mathematical content as well as
tables and structural markup such as headings. It does not output MathML.

10.4 Morf
Morf (UNAR labs, 2025) is an AI-based app for math document conversion. It
converts PDF, Word, PNG or JPG into the formats DOCX, PDF, SVG and BRF.
More output formats are to be implemented; EPUB and eBraille are currently
being looked into. Math content outputs in LaTeX, MathML, Nemeth or UEB.
The app is currently in beta testing with release planned for September 2025.

10.5 Pandoc
Pandoc (Pandoc, 2025) is a free document conversion tool that handles a lot of
different formats. LaTeX math is converted (depending on the output format)
to Unicode, native Word equation objects, MathML, or roff equation19 .

19 Roff is an old-school document formatting language for Linux systems.

70

10.6 WordToEPUB
WordToEPUB (DAISY, 2025) is a free open-source tool developed by the DAISY
consortium. It converts Word documents into EPUB format. Math content in
Word’s format OMML is converted into MathML.

10.7 Conclusions
The possibilities and limitations of the conversion tools listed above remain to
be investigated. The following questions should be considered for an in-depth
study:

• Is the produced markup semantically correct? Would a screen reader
read the result correctly?

• Automatic conversions will likely need a human in the loop for quality
assurance at some point. To how great a degree does the tool produce
accurate results, thus lessening the time needed for QA?

• What happens to the material the tool is used on? Might it be used for
e.g. AI training? What limitations does this imply for conversion of
copyrighted material?

• What does it cost in terms of money? What is the imprint of the tool in
terms of sustainability?

• What are the possibilities for using the tool as a part of a large-scale
production process?

71

11. Large Language Models
By Tim Arborealis Lötberg

Large language models (LLMs) are AI systems trained on massive text corpora
to predict and generate human-like language, enabling them to answer
questions, solve problems, and produce explanations. In recent years,
benchmarks such as OpenAI’s MathVista (Lu, et al., 2024) have emerged to
evaluate LLM performance on mathematical reasoning tasks—ranging from
algebra and geometry to calculus—demonstrating that top models can now
solve many textbook-style problems with high accuracy (Yan, et al., 2025).

In STEM classrooms, teachers can leverage LLMs to create accessible learning
materials on the fly. For instance, an instructor might ask ChatGPT to convert a
complex calculus proof into a step-by-step narrative at varying reading levels,
or to generate image descriptions of chemical structures for students with
visual impairments. LLMs can also produce customized problem sets, complete
with hints and worked solutions, freeing educators to focus on one-on-one
support.

Beyond text generation, LLMs equipped with multimodal capabilities can
process images of mathematical notation and render them into spoken
descriptions. A student with low vision could snap a photo of a geometry
diagram or a matrix equation, and the model would read aloud each element—
vertices, labels, entries—while conveying relational structure (“the second row
has entries three, minus one, and five”). Conversely, via dictation interfaces,
learners who struggle with fine motor control can speak an equation (“integral
from zero to one of x squared dx equals one third”), and the LLM will
transcribe it into formatted LaTeX or MathML.

It is beyond the scope of this review to investigate LLMs’ possible applications
for STEM accessibility in depth. We will, however, note that this field develops
rapidly enough that what was unfeasible last month might be possible today.
To understand the promise and limitations of LLMs, future studies should
investigate:

• Accuracy and misinterpretation rates – How often do models misread
symbols in images or mistranscribe spoken math, and what error
patterns emerge? What is the quality of the MathML markup produced
and how much semantics is preserved?

• Usability for diverse learners – Which interface modalities (voice, text,
haptic) work best for students with different disabilities?

• Impact on learning outcomes – Do LLM-generated accommodations
measurably improve comprehension, retention, and confidence in
STEM subjects? If so, in what way should they be used to enhance
rather than avoid learning? Teachers already have experience of
interest in this field, see e.g. (AI Lund, 2025).

• Bias and equity considerations – Are there disparities in performance
on notation styles, languages, or curricula from different regions?

72

• Integration with AT – How can LLMs best interoperate with screen
readers, refreshable braille displays, and tactile graphics printers?

• Resource impact – What do the use of LLMs for STEM accessibility cost
in terms of money and environmental impact?

• Copyright – What happens when various LLMs are used on copyrighted
materials? Is the material used for training?

73

12. Overall conclusions
This tech review has provided an overview of hardware and software with
STEM applications. With such a broad scope, we have only scratched the
surface when it comes to evaluating specific solutions. We have, however,
identified what gaps in our knowledge need filling, and sifted out a few
suggestions for development which could be undertaken within the near
future.

12.1 Suggestions for further study
Further study is required for in-depth analysis of solutions with promising
accessibility aspects. Integration of separate technologies into a cohesive user
experience also requires further investigation. Naturally, this should involve
user testing.

An important aspect in all future studies is security. Introducing connected devices
unavoidably introduces potential cyber security risks. A risk management plan
could include data traffic analysis (as in the Lion Cage project (LinkedIn, 2025)) and
similar testing in controlled environments. This work could be combined with
encouraging transparency by vendors.

Another aspect to consider is potential specialised accessibility needs for
specific STEM fields. For example, chemistry- or physics-related content could
require alternative context-based markup in MathML. The support for this has
not been explored within the scope of this review. Ideally, expert users within a
variety of fields should be consulted regarding their accessibility needs.

An additional factor to consider in accessible book production is copyright.
With rapidly emerging AI technologies, transparency regarding what happens
to the material that AI-based tools are used upon is essential.

Below are listed suggested follow-up studies:

12.1.1 E-book testing

Create an e-book containing systematic representations of different math
elements, including chemistry notation. The book should be in EPUB format
and markup should follow the new Nordic guidelines for MathML (GitHub,
2025). This should be tested across different reading systems, in particular
Thorium/Readium, EasyReader, Calibre e-reader and Adobe Digital Editions.
The tests should also include the use of a screen reader, in particular NVDA,
JAWS and VoiceOver. The tests should be performed across different operating
systems where possible. E-ink devices could also be looked at. The tests should
convey whether the math elements display and are spoken correctly.

12.1.2 Use of tools in education

Launch a study to systematically evaluate the effectiveness and user
experiences of newer math accessibility tools across different age groups and

74

educational levels. Preferably the same study could be carried out in parallel in
the Nordic countries with the results compared.

This ought to be complemented by longitudinal studies that examine how
early exposure to accessible math tools impacts later academic and career
outcomes for BVI students, including the role of institutional practices.

12.1.3 Evaluate learning management systems

Perform a systematic evaluation of whether LMS:s meet WCAG:s accessibility
criteria at the AA level. Canvas merits priority because it is used by universities
throughout the Nordic countries. Additional LMS:s to include are PING PONG,
Unikum, Vklass and Moodle. Investigations should include screen readers
and other TTS solutions, along with support for evolving standards for MathML
and improved ARIA practices.

Perform a similar study evaluating the accessibility VLE:s, including e.g. Khan
Academy, Coursera, Skillshare, Skolon and Bingel.

12.1.4 Further testing of calculators and graph programs

Launch a study to test the accessibility limits of graph programs, calculators
and equation solvers. In particular, check integration with AT and what modes
of input are available. Document areas of use for the respective tools.

• In Desmos, explore the tools “Scientific”, “Four Function”, “Matrix”,
“Geometry” and “3D”.

• Explore Microsoft Excel to determine what functions are available and
how easily they can be accessed using only a keyboard and a screen
reader.

• Examine the features and accessibility possibilities of Isabelle Proof
Assistant.

• Examine the features and accessibility possibilities of Microsoft Math
Solver and similar tools.

12.1.5 Test multiline tactile displays

Purchase one or several multiline tactile displays. Primarily Monarch, Graphiti
Plus and Tactonom Pro are of interest, but Dot Pad could also be relevant. Test
the user experience of reading graphics in various formats, along with the
overall experience of interacting with STEM e-books through the display.
Features such as authoring mathematics in braille should be tested.

12.1.6 Monitor traditional tactile image techniques

Keep an eye on the results of the study on tactile images by MTM and SPSM
(MTM, 2025). Note possible STEM applications for the techniques and perform
user-centred studies on how analogue and digital tactile graphics might
complement one another.

75

12.1.7 Further studies of programming interfaces

Perform systematic, longitudinal studies that measure real-world productivity
across diverse disability profiles rather than short accessibility checklists.
Especially focus on terminal integration, block-based or drag-and-drop
interfaces and AI copilots or language-server features.

12.1.8 Evaluate conversion tools

Evaluate the following tools for OCR/conversion into MathML: MathKicker,
MathPix, Mistral, Morf, Pandoc and WordToEPUB. These aspects should be
taken into consideration:

• Semantic quality of markup.
• Degree of accuracy based on context.
• Legal aspects of how the material the tool is used upon is handled.
• Sustainability in terms of cost and environmental imprint.
• Possibilities of using the tool as a part of a large-scale production

process.

12.1.9 Investigate Large Language Models

Launch a study to investigate the accuracy of LLMs in the following use cases:

• Reading math aloud from an image.
• Generating MathML from an image or dictation.
• Compatibility with various applications and AT:s.

This could be done in collaboration with e.g. Lund University where there is
experience of working with LLM:s in math teaching (AI Lund, 2025). Aspects
that should be taken into consideration include impact on learning outcomes,
bias, copyright and resource impact.

12.2 Suggested development projects
Below are listed suggested developments which could be undertaken now, or
when necessary, in combination with studies from section 12.1 relevant to the
work.

12.2.1 MathCAT translations

MathCAT has the greatest potential for accessing math through a screen
reader. Of the Nordic languages, MathCAT TTS currently exists in Swedish and
Finnish, and there is partial support for Swedish and Finnish braille.
Translations into Norwegian (Nynorsk and Bokmål), Danish and Icelandic are in
progress. These localisation efforts should be of high priority as many
students of all ages would benefit from access to spoken math in their native
tongue, as well as in a braille code with which they are familiar. Not only will

76

MathCAT benefit screen reader users, but it can also be used for producing
STEM books with pre-recorded TTS20.

12.2.2 Future-proofing MathCAT

MathCAT was founded by Neil Soiffer, who remains the project’s main
developer. However, being dependent on one single developer makes the
project vulnerable, and Neil Soiffer has expressed a need for support in
handling the growth of MathCAT, including software maintenance,
development, and project planning.

We recognise that securing the stability and future development of MathCAT
is of strategic importance when it comes to accessible math reading and
learning. Therefore, we suggest that the Nordic agencies take an active part in
securing funding and expertise for MathCAT in the long term. An appropriate
organisation to do this through would be the DAISY consortium.

12.2.3 Advocate for native MathML support in readers

Request that developers of e-book readers develop native MathML support.
The following are especially relevant:

• Encourage EDRLab to implement native MathML support into Thorium
Reader and make MathJax customization controlled by the user or very
lightweight. MathML support on par with Chromium-based browsers
should be developed for the mobile app Readium.

• Encourage Colibrio to improve mobile app MathML support.
• Encourage Dolphin to improve MathML support in EasyReader.

12.2.4 Advocate for use of MathML

The Nordic agencies should encourage use of MathML in web- and e-book
environments. This could be done through referring e.g. publishers and
educational institutions to current standards and guidelines on a web page, in
leaflets or in talks at conferences. An example STEM e-book (see section
12.1.1) could be provided as an example of an accessible publication.

12.2.5 Develop support for writing math into e-books

Launch a project to develop a cohesive solution for users to write math into e-
books (fill-in-the-blanks style). Desirable functionality includes (but is not
necessarily limited to)

• Options for input method, including braille.
• Support for editing directly through a reading system.
• Editing features to be accessible with a screen reader, braille display

and multiline tactile display.

20 MTM is currently working on building MathCAT into their TTS book production system
(YouTube, 2024).

https://www.edrlab.org/
https://www.colibrio.com/
https://yourdolphin.com/

77

12.2.6 Develop accessible and localised graphing tool

Develop improved graphing tools that support the Nordic languages and that
are easy to use with a screen reader and keyboard.

12.2.7 Develop support for scripted SVG in e-books

The Nordic agencies should participate actively in the development of scripted
SVG images used in EPUBs. The E-braille project (The DAISY Consortium, 2025)
is already working on this. The work should investigate how the parts fit
together and do user testing with cohesive solutions for creating and exploring
images as a goal. Especially multiline tactile displays should be considered.

12.2.8 Develop standards for tactile graphics

The Nordic agencies should take active part in the development of guidelines
and standards for tactile graphics in STEM worldwide. Both digital and
traditional methods are of interest. The work should involve user testing and
take multiline tactile displays into consideration for the digital parts.

78

13. References
ABILITY. (2025, May 19). Retrieved from ABILITY: https://www.ability-

project.eu/ability

Accessibility. (n.d.). Retrieved April 25, 2025, from GeoGebra:
https://help.geogebra.org/hc/en-us/articles/20048444963869-
Accessibility

Adobe Digital Editions. (n.d.). Retrieved 5 22, 2025, from
https://www.adobe.com/solutions/ebook/digital-
editions/download.html

AI Lund. (2025, March 26). Retrieved from AI Lund lunch seminar: The Good,
the Bad, or the Ugly? Reflections on the impact of AI in Teaching First-
Semester Calculus: https://www.ai.lu.se/evenemang/ai-lund-lunch-
seminar-good-bad-or-ugly-reflections-impact-ai-teaching-first-
semester-calculus

APH. (2022). Retrieved from MathSpeak and ClearSpeak: Structured speech for
math accessibility: www.aph.org

APH. (2025, May 19). Retrieved from Tactile Graphic Image Library:
https://www.aph.org/blog/the-tactile-graphics-image-library-helping-
students-succeed/

APH. (2025, May 19). Retrieved from Monarch:
https://www.aph.org/product/monarch/

Armstrong, H. (2009). Advanced IT education for the vision impaired via e-
learning. Journal of Information Technology Education, 8, 243-256.

Astronify. (2025, May 23). Retrieved from Astronify:
https://astronify.readthedocs.io/en/latest/

Barda, D., Jensen, M., & Singh, K. (2023). AI-based math tutoring:evaluating
real-world use of ChatGPT, Gemini and Copilot in higher education.
Journal of Educational Technology Research, 210-232.

Bingel. (2025, June 18). Retrieved from Bingel: https://www.bingel.se/

Blind SVG. (2025, May 23). Retrieved from Blind SVG: https://blindsvg.com/

Bookshare. (n.d.). Retrieved 5 23, 2025, from https://www.bookshare.org/

Braille Authority of North America. (2012, February). Retrieved from Guidelines
and Standards for Tactile Graphics:
https://www.brailleauthority.org/tg/web-manual/index.html

braillesense. (2025, June 17). Retrieved from braillesense:
https://www.braillesense.tech/

Bristol Braille Technology. (2025, May 19). Retrieved from About Canute:
https://bristolbraille.org/about-canute/

Burke, D., Clapper, D., & McRae, D. (2016). Accessible online instruction for
students with disabilities: Federal imperatives and the challenge of
compliance. Journal of Law and Education, 45, 135-180.

https://www.ability-project.eu/ability
https://help.geogebra.org/hc/en-us/articles/20048444963869-Accessibility
https://www.adobe.com/solutions/ebook/digital-editions/download.html
https://www.ai.lu.se/evenemang/ai-lund-lunch-seminar-good-bad-or-ugly-reflections-impact-ai-teaching-first-semester-calculus
https://www.aph.org/
https://www.aph.org/blog/the-tactile-graphics-image-library-helping-students-succeed/
https://www.aph.org/product/monarch/
https://astronify.readthedocs.io/en/latest/
https://www.bingel.se/
https://blindsvg.com/
https://www.bookshare.org/
https://www.brailleauthority.org/tg/web-manual/index.html
https://www.braillesense.tech/
https://bristolbraille.org/about-canute/

79

Calibre - E-book management. (n.d.). Retrieved 5 22, 2025, from
https://calibre-ebook.com/

Cantook by Aldiko – Google Play. (n.d.). Retrieved 5 22, 2025, from
https://play.google.com/store/apps/details?id=com.aldiko.android

ChatGPT. (2025, May 27). Retrieved from ChatGPT: https://chatgpt.com/

CHROME Lab. (2025, May 23). Retrieved from Multimodal Digital Graphics on
Touchscreens: https://sites.google.com/slu.edu/gorlewicz-
lab/research-projects/multimodal-graphics

Chromium. (n.d.). Retrieved 5 22, 2025, from
https://www.chromium.org/Home/

Clusive. (n.d.). Retrieved 5 23, 2025, from https://clusive.cast.org/

CMU Data Interaction Group. (2025, May 23). Retrieved from Chartability:
https://dig.cmu.edu/data-navigator/

Colibrio Reader - Colibrio Reader. (n.d.). Retrieved 5 22, 2025, from
https://www.colibrio.com/

Coursera. (2025, June 18). Retrieved from Coursera:
https://www.coursera.org/

DAISY. (2025, May 23). Retrieved from Exploring Artificial Intelligence: Image
DEscriptions: https://daisy.org/news-events/articles/exploring-
artificial-intelligence-image-descriptions/

DAISY. (2025, May 22). Retrieved from WordToEPUB:
https://daisy.org/activities/software/wordtoepub/

Desmos accessibility. (n.d.). Retrieved April 25, 2025, from Desmos:
https://www.desmos.com/accessibility

DIAGRAM Center. (2025, May 23). Retrieved from Poet Training Tool:
https://poet.diagramcenter.org/

Dotincorp. (2025, May 19). Retrieved from Dot Pad:
https://www.dotincorp.com/en/product/pad

EasyReader App | Dolphin Computer Access. (n.d.). Retrieved 5 22, 2025, from
https://yourdolphin.com/EasyReader-App

epubtest.org. (2025). Retrieved from Accessibility Tests Mathematics v 1.1.1:
https://epubtest.org/test-books/math/1.1.1

epubtest.org: Test visual-550 in Visual Adjustments (2.0.0). (n.d.). Retrieved 5
23, 2025, from https://epubtest.org/test-books/visual-
adjustments/2.0.0/visual-550

European Comission. (2025, May 20). Retrieved from European accessibility
act: https://commission.europa.eu/strategy-and-policy/policies/justice-
and-fundamental-rights/disability/union-equality-strategy-rights-
persons-disabilities-2021-2030/european-accessibility-act_en

Gecko — Firefox Source Docs documentation. (n.d.). Retrieved 5 22, 2025, from
https://firefox-source-docs.mozilla.org/overview/gecko.html

https://calibre-ebook.com/
https://play.google.com/store/apps/details?id=com.aldiko.android
https://chatgpt.com/
https://sites.google.com/slu.edu/gorlewicz-lab/research-projects/multimodal-graphics
https://www.chromium.org/Home/
https://clusive.cast.org/
https://dig.cmu.edu/data-navigator/
https://www.colibrio.com/
https://www.coursera.org/
https://daisy.org/news-events/articles/exploring-artificial-intelligence-image-descriptions/
https://daisy.org/activities/software/wordtoepub/
https://www.desmos.com/accessibility
https://poet.diagramcenter.org/
https://www.dotincorp.com/en/product/pad
https://yourdolphin.com/EasyReader-App
https://epubtest.org/test-books/math/1.1.1
https://epubtest.org/test-books/visual-adjustments/2.0.0/visual-550
https://commission.europa.eu/strategy-and-policy/policies/justice-and-fundamental-rights/disability/union-equality-strategy-rights-persons-disabilities-2021-2030/european-accessibility-act_en
https://firefox-source-docs.mozilla.org/overview/gecko.html

80

GitHub. (2025, May 20). Retrieved from Support HID standard multi-line braille
displays: https://github.com/nvaccess/nvda/issues/16993

GitHub. (2025, May 21). Retrieved from Nordic MathML Guidelines:
https://github.com/nlbdev/mathml-guidelines/blob/2024-
1/Guidelines/Nordic%20MathML%20Guidelines%202024-1.md

GitHub. (2025, May 20). Retrieved from MathCAT: Math Capable Assistive
Technology: https://nsoiffer.github.io/MathCAT/

GitHub. (2025, May 27). Retrieved from WordMat: https://github.com/Eduap-
com/WordMat/releases

GNU. (2025, June 17). Retrieved from GNU Emacs:
https://www.gnu.org/software/emacs/

Goodnotes. (2025, June 17). Retrieved from https://www.goodnotes.com/

Google Drive. (2025). Retrieved from modified added math accessibility tests
mathematics:
https://drive.google.com/file/d/1Dv4OvTQ_5aohbpHi5LlJh9mnlHxtffkJ/
view

Google Play Books. (n.d.). Retrieved 5 23, 2025, from
https://play.google.com/store/apps/details?id=com.google.android.ap
ps.books

Gutiérrez Gómez-Calcerrada, S., Solera Hernández, E., & García González, J.
(2005). Una Aproximación a La Realidad De Las Plataformas Virtuales
De Las Universidades Españolas: El Primer Reto Para Una Educación
Personalizada en Personas Con Discapacidad Motórica O Visual.
Enseñanza & Teaching, 59-78.

Gyldendal. (2025, June 17). Retrieved from GEOS: https://geos.gyldendal.dk/

Gyldendal. (2025, June 17). Retrieved from Gyldendal:
https://www.gyldendal.dk/

Hadian, S., & Storey, M.-A. (2005). Accessibility in a Virtual Classroom: A Case
Study for the Visually Impaired Using Webct. Proceedings of the IADIS
International Conference on Cognition & Exploratory Learning in Digital
Age, (pp. 1-3).

Highcharts. (2025, May 23). Retrieved from Highcharts:
https://www.highcharts.com/

Humanware. (2025, June 17). Retrieved from Braille notetakers:
https://store.humanware.com/hus/braille-devices/braille-notetakers

Inclusio Community. (2025, May 23). Retrieved from Inclusio:
https://inclusiocommunity.com/

Infrastructure. (2025, June 18). Retrieved from Canvas LMS for higher ed:
https://www.instructure.com/higher-
education/products/canvas/canvas-lms

Kamaghe, J., Luhanga, E., & Kisangiri, M. (2020). The Challenges of Adopting M-
Learning Assistive Technologies for Visually Impaired Learners in Higher

https://github.com/nvaccess/nvda/issues/16993
https://github.com/nlbdev/mathml-guidelines/blob/2024-1/Guidelines/Nordic%20MathML%20Guidelines%202024-1.md
https://nsoiffer.github.io/MathCAT/
https://github.com/Eduap-com/WordMat/releases
https://www.gnu.org/software/emacs/
https://www.goodnotes.com/
https://drive.google.com/file/d/1Dv4OvTQ_5aohbpHi5LlJh9mnlHxtffkJ/view
https://play.google.com/store/apps/details?id=com.google.android.apps.books
https://geos.gyldendal.dk/
https://www.gyldendal.dk/
https://www.highcharts.com/
https://store.humanware.com/hus/braille-devices/braille-notetakers
https://inclusiocommunity.com/
https://www.instructure.com/higher-education/products/canvas/canvas-lms

81

Learning Institution in Tanzania. International Journal of Emerging
Technologies in Learning, 140-151.

Kaufhold, N., & Steinert, J. (2024). Work in progress: Expanding learning
opportunities in STEM courses: The potential of haptic VR laboratories
for students with and without visual impairment. Berlin: Springer
Nature.

Keyboard shortcuts in Excel. (n.d.). Retrieved April 25, 2025, from Microsoft
support: https://support.microsoft.com/en-us/office/keyboard-
shortcuts-in-excel-1798d9d5-842a-42b8-9c99-
9b7213f0040f#bkmk_datawin

Khan Academy. (2025, June 18). Retrieved from Khan Academy:
https://www.khanacademy.org/

Kobo | Rakuten Kobo. (n.d.). Retrieved 5 23, 2025, from
https://www.kobo.com/fi/fi/p/apps

LaTeX. (2025, May 27). Retrieved from The LaTeX project: https://www.latex-
project.org/

Legimus. (n.d.). Retrieved 5 23, 2025, from https://www.legimus.se/

LinkedIn. (2025, May 20). Retrieved from Project Lion Cage:
https://www.linkedin.com/pulse/project-lion-cage-part-1-tor-
indst%C3%B8y/

Lithium: EPUB Reader – Google Play. (n.d.). Retrieved 5 22, 2025, from
https://play.google.com/store/apps/details?id=com.faultexception.rea
der

Lu, P., Bansal, H., Xia, T., Liu, J., Li, C., Hajishirzi, H., . . . Gao, J. (2024).
MathVista: Evaluating Mathematical Reasoning of Foundation Models
in Visual Contexts. ICLR.

Maidenbaum, S., Levy-Tzedek, S., Chebat, D.-R., & Amedi, A. (2013). Increasing
accessibility to the blind of virtual environments, using a virtual
mobility aid based on the "EyeCane": Feasibility study. PLoS One, 8.

Maple. (n.d.). Retrieved April 25, 2025, from NTNU: https://i.ntnu.no/wiki/-
/wiki/English/Maple

Maplesoft. (2025, March 24). Maple Fundamentals Guide. Retrieved from
https://www.maplesoft.com/support/training/quickstart.aspx

Markdown Guide. (2025, June 17). Retrieved from
https://www.markdownguide.org/

Markdown Guide. (2025, June 17). Retrieved from
https://www.markdownguide.org/tools/hackmd/

MatematikFessor. (2025, May 27). Retrieved from MatematikFessor:
https://www.matematikfessor.dk/

MathCAT: Math Capable Assistive Technology | MathCAT. (n.d.). Retrieved 5
22, 2025, from https://nsoiffer.github.io/MathCAT/

MathJax. (2025). Retrieved 5 22, 2025, from MathJax | Beautiful math in all
browsers.: https://www.mathjax.org/

https://support.microsoft.com/en-us/office/keyboard-shortcuts-in-excel-1798d9d5-842a-42b8-9c99-9b7213f0040f#bkmk_datawin
https://www.khanacademy.org/
https://www.kobo.com/fi/fi/p/apps
https://www.latex-project.org/
https://www.legimus.se/
https://www.linkedin.com/pulse/project-lion-cage-part-1-tor-indst%C3%B8y/
https://i.ntnu.no/wiki/-/wiki/English/Maple
https://www.maplesoft.com/support/training/quickstart.aspx
https://www.markdownguide.org/
https://www.markdownguide.org/tools/hackmd/
https://www.matematikfessor.dk/
https://nsoiffer.github.io/MathCAT/
https://www.mathjax.org/
https://play.google.com/store/apps/details?id=com.faultexception.reader

82

MathKicker. (2025, May 22). Retrieved from MathKicker: https://mathkicker.ai/

MathML Core. (n.d.). Retrieved 5 22, 2025, from
https://www.w3.org/TR/mathml-core/

MathPix. (2025, May 22). Retrieved from MathPix: https://mathpix.com/

McCabe, F. &. (2023). Matematik och programmering En studie om läromedel,
metoder och teknik som fungerar för punktskriftsanvändare.
Punktskriftsnämnden.

Microsoft. (2025, June 17). Retrieved from Math Solver:
https://mathsolver.microsoft.com/en

Mistral. (2025, March 6). Retrieved from Mistral OCR:
https://mistral.ai/news/mistral-ocr?fbclid=IwY2xjawJ-
zypleHRuA2FlbQIxMABicmlkETBLSE12NzhPZ3Awb2JPU0hkAR5wHmgPa
3CkLDWtV9Ff3ZhyEuJ0Q6FAZfkYRyhA2hKdLqKfsyV83BqiHGnUOA_aem
_ebXGPItR7cM2b50YFTqKZg

MIT News. (2025, May 23). Retrieved from A new way to make graphs more
accessible to blind and low-vision readers:
https://news.mit.edu/2025/making-graphs-more-accessible-blind-low-
vision-readers-0325

MIT News. (2025, March 25). Retrieved from A new way to make graphs more
accessible to blind and low-vision readers:
https://news.mit.edu/2025/making-graphs-more-accessible-blind-low-
vision-readers-0325

Moodle. (2025, June 18). Retrieved from Moodle: https://moodle.com/

MTM. (2025, May 19). Retrieved from MTM och SPSM söker forskare för
uppdrag med fokus på taktila bilder:
https://www.mtm.se/nyheter/mtm-och-spsm-soker-forskare-for-
uppdrag-med-fokus-pa-taktila-bilder/

New York Public Library. (2025, May 23). Retrieved from Dimensions:
Community Tools for Making Tactile Graphics & Objects:
https://www.nypl.org/about/locations/heiskell/dimensions

Nganji, J., & Brayshaw, M. (2017). Disability-aware adaptive and personalised
learning for students with multiple disabilities. The International
Journal of Information and Learning Technology, , 307-321.

Nota Bibliotek 2.0 app | Nota bibliotek. (n.d.). Retrieved 5 23, 2025, from
https://nota.dk/services/nota-bibliotek-20-app

Notability. (2025, June 17). Retrieved from Notability:
https://notability.com/en

Notion. (2025, June 17). Retrieved from https://www.notion.com/product

Orbit Research. (2025, May 19). Retrieved from Graphiti:
https://www.orbitresearch.com/product/graphiti/

Orbit Research. (2025, May 19). Retrieved from Graphiti Plus:
https://www.orbitresearch.com/product/graphiti-plus/

https://mathkicker.ai/
https://www.w3.org/TR/mathml-core/
https://mathpix.com/
https://mathsolver.microsoft.com/en
https://mistral.ai/news/mistral-ocr?fbclid=IwY2xjawJ-zypleHRuA2FlbQIxMABicmlkETBLSE12NzhPZ3Awb2JPU0hkAR5wHmgPa3CkLDWtV9Ff3ZhyEuJ0Q6FAZfkYRyhA2hKdLqKfsyV83BqiHGnUOA_aem_ebXGPItR7cM2b50YFTqKZg
https://news.mit.edu/2025/making-graphs-more-accessible-blind-low-vision-readers-0325
https://news.mit.edu/2025/making-graphs-more-accessible-blind-low-vision-readers-0325
https://moodle.com/
https://www.mtm.se/nyheter/mtm-och-spsm-soker-forskare-for-uppdrag-med-fokus-pa-taktila-bilder/
https://www.nypl.org/about/locations/heiskell/dimensions
https://nota.dk/services/nota-bibliotek-20-app
https://notability.com/en
https://www.notion.com/product
https://www.orbitresearch.com/product/graphiti/
https://www.orbitresearch.com/product/graphiti-plus/

83

Oribi. (2025). Retrieved from Equatio:
https://www.oribi.se/produkter/equatio/

Overleaf. (2025). Retrieved from www.overleaf.com

Pandoc. (2025, May 22). Retrieved from Pandoc - a universal document
converter: https://pandoc.org/

Pandoc. (2025, May 22). Retrieved from Pandoc - a universal document
converter: https://pandoc.org/

Park, K., So, H.-J., & Cha, H. (2019). Digital equity and accessible MOOCs:
Accessibility evaluations of mobile MOOCs for learners with visual
impairments. Australasian Journal of Educational Technology, 48-63.

Pcmacstore. (2025, June 17). Retrieved from MathPad for PC and Mac:
https://pcmacstore.com/en/software/1146553245/mathpad

Photomath. (2025). Retrieved from https://photomath.com/

Ping pong. (2025, June 18). Retrieved from Ping pong:
https://www.pingpong.se/

Pollack, I., & Ficks, L. (1954). The Information of Elementary Multidimensional
Auditory Displays. The Journal of the Acoustical Society of America.

Pratsam Reader App – Pratsam. (n.d.). Retrieved 5 22, 2025, from
https://www.pratsam.com/pratsam-reader-app-tuote.html

ProBlind. (2025, May 19). Retrieved from ProBlind Database:
https://www.problind.org/en/

ProBlind. (2025, May 23). Retrieved from ProBlind:
https://www.problind.org/en/

Q42. (2025, mAY 23). Retrieved from SenseMath:
https://www.q42.nl/en/work/sensemath-app

ReadSpeaker. (n.d.). Bring natural text to speech to any content or application.
Retrieved from ReadSpeaker: https://www.readspeaker.com/

Ready, S. (2017). Making Virtual Learning Accessible for the Visually Impaired.
Exceptional Parent, 36-37.

RedShelf. (n.d.). Retrieved 5 23, 2025, from https://www.redshelf.com/

Riley-Ancar, H. (2022). Accessibility challenges of online learning affecting
successful degree completion among visually impaired
Undergraduate/Graduate students: An exploratory case study. Social
Science Premium Collection.
doi:https://www.proquest.com/docview/2728985279

Rønning, Ø. (2020, September 23). Scratch. Retrieved from GitHub:
https://github.com/oivron/coding-without-seeing/wiki/Scratch

Rønning, Ø. (2021, January 20). Jupyter Notebook og JupyterLab. Retrieved
from GitHub: https://github.com/oivron/coding-without-
seeing/wiki/Jupyter-Notebook-og-JupyterLab

Rønning, Ø. (2022, June 29). PyCharm. Retrieved from GitHub:
https://github.com/oivron/coding-without-seeing/wiki/PyCharm

https://www.oribi.se/produkter/equatio/
https://www.overleaf.com/
https://pandoc.org/
https://pandoc.org/
https://pcmacstore.com/en/software/1146553245/mathpad
https://photomath.com/
https://www.pingpong.se/
https://www.pratsam.com/pratsam-reader-app-tuote.html
https://www.problind.org/en/
https://www.problind.org/en/
https://www.q42.nl/en/work/sensemath-app
https://www.readspeaker.com/
https://www.redshelf.com/
https://www.proquest.com/docview/2728985279
https://github.com/oivron/coding-without-seeing/wiki/Scratch
https://github.com/oivron/coding-without-seeing/wiki/Jupyter-Notebook-og-JupyterLab
https://github.com/oivron/coding-without-seeing/wiki/PyCharm

84

Rønning, Ø. (2022, June 29). PyCharm. Retrieved from GitHub:
https://github.com/oivron/coding-without-seeing/wiki/PyCharm

Rønning, Ø. (2023). coding-without-seeing. Retrieved from GitHub:
https://github.com/oivron/coding-without-seeing

Rønning, Ø. (2023, February 20). NotepadPlusPlus. Retrieved from GitHub:
https://github.com/oivron/coding-without-
seeing/wiki/NotepadPlusPlus

Rønning, Ø. (2024, January 12). Visual Studio Code. Retrieved from GitHub:
https://github.com/oivron/coding-without-seeing/wiki/Visual-Studio-
Code

Schlichtkrull, A. (2018). Formalization of Logic in the Isabelle Proof Assistant.
DTU Compute PHD-2018, 493. Retrieved from
https://findit.dtu.dk/en/catalog/5c18d34ad9001d015134d162

Seeing AI. (2025, May 23). Retrieved from Seeing AI:
https://www.seeingai.com/

SenseMath - Making Sense of Math. (n.d.). Retrieved April 25, 2025, from
Enviter: https://enviter.eu/sensemath-making-sense-of-math/

Skillshare. (2025, June 18). Retrieved from Skillshare:
https://www.skillshare.com/en/

Skolon. (2025, June 18). Retrieved from Skolon: https://skolon.com/sv/hem/

SnapChat. (2025, May 27). Retrieved from SnapChat:
https://www.snapchat.com/

Sorge, V. (2023). W3C. Retrieved from MathML accessibility and the MathCAT
library: www.w3.org

Sourceforge. (2025, June 17). Retrieved from TeXworks:
https://sourceforge.net/projects/texworks.mirror/

Statped. (2025). Programmering for elever med nedsatt syn og blindhet |
statped.no. Retrieved from Statped | statped.no:
https://www.statped.no/laringsressurser/syn/temaside-
programmering-for-elever-med-nedsatt-syn-temaside/

Symbolab. (2025, May 27). Retrieved from Symbolab:
https://www.symbolab.com/

Systime. (2025, June 17). Retrieved from https://systime.dk/

Tactile Engineering. (2025, May 16). Retrieved from The Cadence Tablet:
https://www.tactile-engineering.com/cadence

Tactonom. (2025, May 19). Retrieved from Tactonom Pro:
https://www.tactonom.com/en/tactonom-pro/

Technische Universität München. (2025, June 17). Retrieved from Isabelle:
https://isabelle.in.tum.de/

Texas Instruments. (2025, May 27). Retrieved from TI-nspire:
https://education.ti.com/sv/produkter/raknare/grafraknare/ti-nspire-
cx-cas

https://github.com/oivron/coding-without-seeing/wiki/PyCharm
https://github.com/oivron/coding-without-seeing
https://github.com/oivron/coding-without-seeing/wiki/NotepadPlusPlus
https://github.com/oivron/coding-without-seeing/wiki/Visual-Studio-Code
https://findit.dtu.dk/en/catalog/5c18d34ad9001d015134d162
https://www.seeingai.com/
https://enviter.eu/sensemath-making-sense-of-math/
https://www.skillshare.com/en/
https://skolon.com/sv/hem/
https://www.snapchat.com/
www.w3.org
https://sourceforge.net/projects/texworks.mirror/
https://www.statped.no/laringsressurser/syn/temaside-programmering-for-elever-med-nedsatt-syn-temaside/
https://www.symbolab.com/
https://systime.dk/
https://www.tactile-engineering.com/cadence
https://www.tactonom.com/en/tactonom-pro/
https://isabelle.in.tum.de/
https://education.ti.com/sv/produkter/raknare/grafraknare/ti-nspire-cx-cas

85

TeXstudio. (2025, June 17). Retrieved from TeXstudio - A LaTeX editor:
https://www.texstudio.org/

The DAISY Consortium. (2025, May 22). Retrieved from Braille File Formats:
https://daisy.org/activities/projects/ebraille/

The DAISY Consortium. (2025, May 22). Retrieved from DAISY Consortium
Position statement on MathML:
https://daisy.github.io/transitiontoepub/information-sharing/position-
paper-plain-text-math/

Thorium Reader. (n.d.). Retrieved 5 22, 2025, from
https://thorium.edrlab.org/en/

TouchPad Pro Foundation. (2025, May 19). Retrieved from BrailleDoodle:
https://www.touchpadprofoundation.org/

UNAR labs. (2025, May 22). Retrieved from Morf: https://www.unarlabs.com/

Unikum. (2025, June 18). Retrieved from Unikum: https://www.unikum.net/

Visual Studio Code. (2025, June 17). Retrieved from Visual Studio Code:
https://code.visualstudio.com/

Vklass. (2025, June 18). Retrieved from Vklass: https://www.vklass.com/

W3C. (2024, 12 12). Retrieved 5 23, 2025, from Web Content Accessibility
Guidelines (WCAG) 2.2: https://www.w3.org/TR/WCAG22/

W3C. (2025, May 19). Retrieved from Draft of SVG standard:
https://www.w3.org/TR/SVG/interact.html

W3C. (2025, May 19). Retrieved from EPUB 3.3 standard:
https://www.w3.org/TR/epub-33/#sec-scripted-content

W3C. (2025, May 23). Retrieved from EPUB 3.3 W3C Recommendation:
https://www.w3.org/TR/epub-33/#sec-xhtml-svg

W3C. (2025, May 20). Retrieved from Mathematical Markup Language:
https://www.w3.org/TR/MathML/

W3C. (2025, May 26). Retrieved from WCAG 2.0 Accessibility Criteria:
https://www.w3.org/TR/WCAG20/

Walker, B. N., & Nees, M. A. (2011). Theory of Sonification. In A. H. Thomas
Hermann, The Sonification Handbook (pp. 9-39). Berlin: Logos
Publishing House.

WebKit. (n.d.). Retrieved 5 22, 2025, from https://webkit.org

What is GeoGebra? (n.d.). Retrieved from GeoGebra:
https://www.geogebra.org/about

What is GeoGebra? (n.d.). Retrieved April 25, 2025, from GeoGebra:
https://www.geogebra.org/about

WinEdt. (2025, June 17). Retrieved from WinEdt 11: https://www.winedt.com/

Wolfram Alpha. (2025, May 27). Retrieved from Wolfram Alpha:
https://www.wolframalpha.com/

https://www.texstudio.org/
https://daisy.org/activities/projects/ebraille/
https://daisy.github.io/transitiontoepub/information-sharing/position-paper-plain-text-math/
https://thorium.edrlab.org/en/
https://www.touchpadprofoundation.org/
https://www.unarlabs.com/
https://www.unikum.net/
https://code.visualstudio.com/
https://www.vklass.com/
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/SVG/interact.html
https://www.w3.org/TR/epub-33/#sec-scripted-content
https://www.w3.org/TR/epub-33/#sec-xhtml-svg
https://www.w3.org/TR/MathML/
https://www.w3.org/TR/WCAG20/
https://webkit.org/
https://www.geogebra.org/about
https://www.geogebra.org/about
https://www.winedt.com/
https://www.wolframalpha.com/

86

Yan, Y., Su, J., He, J., Fu, F., Zheng, X., Lyu, Y., . . . Hu, X. (2025). A Survey of
Mathematical Reasoning in the Era of Multimodal Large Language
Model: Benchmark, Method & Challenges. ACL Findings.

YouTube. (2024). Retrieved from DPS2024 - 09 - Math books with synthetic
speech - Tim Arborealis, Karl Adam Tiderman:
https://www.youtube.com/watch?v=J2ba5JPvkY0&list=PLQAmHah-
XQKz_GrPsucRHO5oHGkp8Kk_O&index=11

https://www.youtube.com/watch?v=J2ba5JPvkY0&list=PLQAmHah-XQKz_GrPsucRHO5oHGkp8Kk_O&index=11

	STEM tech review
	1. Background and scope
	1.1 Background
	1.2 Glossary
	1.3 Acknowledgements

	2. Screen readers
	2.1 Introduction
	2.2 Screen Readers and Mathematics
	2.2.1 MathJax
	2.2.2 MathCAT

	2.3 Screen Reader Testing
	2.3.1 JAWS
	2.3.2 NVDA
	2.3.3 VoiceOver
	2.3.4 TalkBack
	2.3.5 Narrator
	2.3.6 Orca
	2.3.7 Dolphin Supernova and ScreenReader

	2.4 Conclusions

	3. Reading systems’ support for MathML
	3.1 Background
	3.2 Research question
	3.2.1 Why focus only on visual rendering?

	3.3 Research design
	3.3.1 Chosen test e-book
	3.3.1.1 Modifications to the test e-book

	3.3.2 Criteria for defining support for visual rendering of MathML
	3.3.2.1 Native support for MathML
	3.3.2.2 Partial support for MathML
	3.3.2.3 No support for MathML
	3.3.2.4 Support for MathML by MathJax

	3.3.3 Tested reading systems
	3.3.4 Limitations

	3.4 Results
	3.4.1 Thorium Reader
	3.4.2 Calibre e-reader
	3.4.3 Adobe Digital Editions
	3.4.4 Dolphin EasyReader
	3.4.4.1 Desktop
	3.4.4.2 Mobile

	3.4.5 Colibrio Reader
	3.4.6 Web reader
	3.4.7 Mobile app
	3.4.8 Pratsam Reader
	3.4.9 Lithium: EPUB reader
	3.4.10 Cantook by Aldiko
	3.4.11 Kobo Books
	3.4.12 Legimus
	3.4.13 RedShelf
	3.4.14 Nota Bibliotek 2.0
	3.4.15 Book Share
	3.4.16 Play Books
	3.4.17 Clusive

	3.5 Conclusions
	3.5.1 Best support when using MathJax
	3.5.2 Native MathML support is rare
	3.5.3 Partial support
	3.5.4 No support is the most common in mobile apps

	3.6 Discussion
	3.6.1 Next steps
	3.6.2 In-depth discussion

	3.7 Further research
	3.7.1 Note on the review

	4. Writing Math
	4.1 Introduction
	4.2 Blind Students in Denmark
	4.2.1 Challenge
	4.2.2 Primary School: WordMat, GeoGebra, MatematikFessor
	MatematikFessor is Not Fully Accessible

	4.2.3 Biggest Challenge: VLE:s in Primary School
	4.2.4 Conclusion: Writing Math in Primary School

	4.3 Upper Secondary School Tools
	4.3.1 TI-Nspire, Maple, Math Platforms, and CAS Tools
	4.3.2 Maple Is Clearly Better for Visually Impaired Students.
	4.3.3 Comparison between Maple and TI-Nspire

	4.4 Higher Education
	4.4.1 How Snapchat Can Help Solve a Math Equation
	4.4.2 Request from BVI Danish High School Students

	4.5 Authoring Math Accessibly: Overleaf and Alternatives
	4.5.1 Overleaf
	4.5.2 Alternatives
	Desktop LaTeX Editors
	Markdown with MathJax or KaTeX
	Usage Trends

	4.6 Mobile math authoring tools and Audio-Based Math Input systems
	4.6.1 Audio-Based Math Entry Systems
	EquatIO (Voice Input Mode)

	4.7 Writing Math as a Blind Student: An International Perspective
	4.7.1 Text-Based Input
	4.7.2 Accessible Digital Tools and Math Editors
	4.7.3 Braille Displays and Math Braille
	4.7.4 Audio-Based Math Access
	4.7.5 Human Support as Infrastructure
	4.7.6 Common Global Barriers
	VoiceOver + MathPad (iOS)

	4.7.7 Braille notetakers
	4.7.8 Math Solver
	What Can MathSolver Do?
	Advantages for visually impaired
	Limitations

	4.7.9 Online platforms accessible
	4.7.10 Challenges
	Known Challenges with Speech-to-Math Systems
	Challenges with Mobile Math Authoring Tools

	4.7.11 Practical Use in Education

	4.8 Conclusions

	5. Calculators and graph programs
	5.1 Introduction
	5.2 GeoGebra
	5.2.1 GeoGebra Graphing
	5.2.2 GeoGebra CAS

	5.3 Desmos
	5.3.1 Desmos app

	5.4 SenseMath
	5.5 Microsoft Excel
	5.6 Maple
	5.7 Isabelle Proof Assistant
	5.8 Conclusion

	6. Multiline tactile displays
	6.1 Introduction
	6.2 Overall comparison
	6.3 Cadence
	6.4 Canute 360
	6.5 Dot Pad
	6.6 Graphiti
	6.7 Monarch
	6.8 Tactonom Pro
	6.9 Future development
	6.10 Conclusions

	7. Graphs and diagrams
	7.1 Image descriptions
	7.1.1 Poet
	7.1.2 Seeing AI

	7.2 Haptics
	7.2.1 Multimodal Digital Graphics on Touchscreens

	7.3 Sonification
	7.3.1 Astronify
	7.3.2 SenseMath

	7.4 Tactile images
	7.4.1 Blind SVG
	7.4.2 Dimensions
	7.4.3 ProBlind
	7.4.4 Tactile Vega-Lite

	7.5 Other tools and projects
	7.5.1 Chartability
	7.5.2 Data Navigator
	7.5.3 Highcharts
	7.5.4 Inclusio

	7.6 Conclusions

	8. Programming interfaces
	8.1 General considerations
	8.1.1 Definitions
	8.1.2 Previous work

	8.2 Evaluation criteria
	8.2.1 Installation and setup
	8.2.2 Basic navigation
	8.2.3 Code editing
	8.2.4 Debugging and Error Messages
	8.2.5 Autocomplete and Suggestions
	8.2.6 Accessibility Settings and Customisation
	8.2.7 Terminal/Console Access
	8.2.8 Documentation and Community Support

	8.3 Specific programming interfaces
	8.3.1 Jupyter Note-book
	8.3.2 Notepad++
	8.3.3 PyCharm
	8.3.4 Scratch
	8.3.5 Visual Studio Code
	8.3.6 Other editors

	8.4 Conclusions

	9. Learning platforms
	9.1 Introduction to learning platforms
	9.2 Background and previous studies
	9.3 Research questions
	9.4 Findings

	10. Conversion tools
	10.1 MathKicker
	10.2 MathPix
	10.3 Mistral
	10.4 Morf
	10.5 Pandoc
	10.6 WordToEPUB
	10.7 Conclusions

	11. Large Language Models
	12. Overall conclusions
	12.1 Suggestions for further study
	12.1.1 E-book testing
	12.1.2 Use of tools in education
	12.1.3 Evaluate learning management systems
	12.1.4 Further testing of calculators and graph programs
	12.1.5 Test multiline tactile displays
	12.1.6 Monitor traditional tactile image techniques
	12.1.7 Further studies of programming interfaces
	12.1.8 Evaluate conversion tools
	12.1.9 Investigate Large Language Models

	12.2 Suggested development projects
	12.2.1 MathCAT translations
	12.2.2 Future-proofing MathCAT
	12.2.3 Advocate for native MathML support in readers
	12.2.4 Advocate for use of MathML
	12.2.5 Develop support for writing math into e-books
	12.2.6 Develop accessible and localised graphing tool
	12.2.7 Develop support for scripted SVG in e-books
	12.2.8 Develop standards for tactile graphics

	13. References

Tillgänglighetsrapport

		Filnamn:

		STEM_tech_review_report_final_tillgänglig.pdf

		Rapporten har skapats av:

		

		Organisation:

		

[Ange personlig information och organisationsinformation i dialogrutan Inställningar > Identitet.]

Sammanfattning

Kontrollfunktionen hittade inga problem i det här dokumentet.

		Kräver manuell kontroll: 2

		Manuellt godkänd: 0

		Manuellt underkänd: 0

		Överhoppat: 4

		Godkänt: 26

		Underkänt: 0

Detaljerad rapport

		Dokument

		Regelnamn		Status		Beskrivning

		Behörighetsflagga för tillgänglighet		Godkänt		Behörighetsflagga för tillgänglighet måste anges

		PDF-fil med bara bilder		Godkänt		Dokumentet är ingen PDF-fil med bara bilder

		Taggad PDF		Godkänt		Dokumentet är en taggad PDF

		Logisk läsordning		Kräver manuell kontroll		Dokumentstrukturen har en logisk läsordning

		Primärt språk		Godkänt		Textspråk är angivet

		Titel		Godkänt		Dokumenttiteln visas i namnlisten

		Bokmärken		Godkänt		Bokmärken finns i stora dokument

		Färgkontrast		Kräver manuell kontroll		Dokumentet har korrekt färgkontrast

		Sidinnehåll

		Regelnamn		Status		Beskrivning

		Taggat innehåll		Godkänt		Allt sidinnehåll är taggat

		Taggade anteckningar		Överhoppat		Alla anteckningar är taggade

		Tabbordning		Godkänt		Tabbordningen stämmer överens med strukturordningen

		Teckenkodning		Överhoppat		Tillförlitlig teckenkodning erbjuds

		Taggad multimedia		Godkänt		Alla multimedieobjekt är taggade

		Skärmflimmer		Godkänt		Sidan kommer inte att orsaka skärmflimmer

		Skript		Godkänt		Inga otillgängliga skript

		Tidsbestämda svar		Godkänt		Sidan kräver inga tidsbestämda svar

		Navigeringslänkar		Godkänt		Navigeringslänkarna är inte repetitiva

		Formulär

		Regelnamn		Status		Beskrivning

		Taggade formulärfält		Godkänt		Alla formulärfält är taggade

		Fältbeskrivningar		Godkänt		Alla formulärfält har beskrivningar

		Alternativ text

		Regelnamn		Status		Beskrivning

		Alternativ text för figurer		Godkänt		Figurer måste ha alternativ text

		Inkapslad alternativ text		Godkänt		Alternativ text som aldrig kommer att läsas.

		Kopplat till innehåll		Godkänt		Alternativ text måste vara kopplad till något innehåll

		Döljer anteckning		Godkänt		Den alternativa texten bör inte dölja anteckningen

		Alternativ text för andra element		Överhoppat		Andra element som kräver alternativ text

		Tabeller

		Regelnamn		Status		Beskrivning

		Rader		Godkänt		TR måste vara underordnad Table, THead, TBody eller TFoot

		TH och TD		Godkänt		TH och TD måste vara underordnade TR

		Rubriker		Godkänt		Tabeller bör ha rubriker

		Regelbundenhet		Godkänt		Tabeller måste innehålla samma antal kolumner i varje rad och samma antal rader i varje kolumn

		Sammanfattning		Överhoppat		Tabeller måste ha en sammanfattning

		Listor

		Regelnamn		Status		Beskrivning

		Listpunkter		Godkänt		LI måste vara underordnad L

		Lbl och LBody		Godkänt		Lbl och LBody måste vara underordnade LI

		Rubriker

		Regelnamn		Status		Beskrivning

		Relevant kapsling		Godkänt		Relevant kapsling

Till början

Tillgänglighetsrapport

		Filnamn:

		STEM_tech_review_report_final_sid67.pdf

		Rapporten har skapats av:

		

		Organisation:

		

[Ange personlig information och organisationsinformation i dialogrutan Inställningar > Identitet.]

Sammanfattning

Kontrollfunktionen hittade problem som kan förhindra dokumentet från att vara fullständigt tillgängligt.

		Kräver manuell kontroll: 2

		Manuellt godkänd: 0

		Manuellt underkänd: 0

		Överhoppat: 4

		Godkänt: 25

		Underkänt: 1

Detaljerad rapport

		Dokument

		Regelnamn		Status		Beskrivning

		Behörighetsflagga för tillgänglighet		Godkänt		Behörighetsflagga för tillgänglighet måste anges

		PDF-fil med bara bilder		Godkänt		Dokumentet är ingen PDF-fil med bara bilder

		Taggad PDF		Godkänt		Dokumentet är en taggad PDF

		Logisk läsordning		Kräver manuell kontroll		Dokumentstrukturen har en logisk läsordning

		Primärt språk		Godkänt		Textspråk är angivet

		Titel		Underkänt		Dokumenttiteln visas i namnlisten

		Bokmärken		Godkänt		Bokmärken finns i stora dokument

		Färgkontrast		Kräver manuell kontroll		Dokumentet har korrekt färgkontrast

		Sidinnehåll

		Regelnamn		Status		Beskrivning

		Taggat innehåll		Godkänt		Allt sidinnehåll är taggat

		Taggade anteckningar		Överhoppat		Alla anteckningar är taggade

		Tabbordning		Godkänt		Tabbordningen stämmer överens med strukturordningen

		Teckenkodning		Överhoppat		Tillförlitlig teckenkodning erbjuds

		Taggad multimedia		Godkänt		Alla multimedieobjekt är taggade

		Skärmflimmer		Godkänt		Sidan kommer inte att orsaka skärmflimmer

		Skript		Godkänt		Inga otillgängliga skript

		Tidsbestämda svar		Godkänt		Sidan kräver inga tidsbestämda svar

		Navigeringslänkar		Godkänt		Navigeringslänkarna är inte repetitiva

		Formulär

		Regelnamn		Status		Beskrivning

		Taggade formulärfält		Godkänt		Alla formulärfält är taggade

		Fältbeskrivningar		Godkänt		Alla formulärfält har beskrivningar

		Alternativ text

		Regelnamn		Status		Beskrivning

		Alternativ text för figurer		Godkänt		Figurer måste ha alternativ text

		Inkapslad alternativ text		Godkänt		Alternativ text som aldrig kommer att läsas.

		Kopplat till innehåll		Godkänt		Alternativ text måste vara kopplad till något innehåll

		Döljer anteckning		Godkänt		Den alternativa texten bör inte dölja anteckningen

		Alternativ text för andra element		Överhoppat		Andra element som kräver alternativ text

		Tabeller

		Regelnamn		Status		Beskrivning

		Rader		Godkänt		TR måste vara underordnad Table, THead, TBody eller TFoot

		TH och TD		Godkänt		TH och TD måste vara underordnade TR

		Rubriker		Godkänt		Tabeller bör ha rubriker

		Regelbundenhet		Godkänt		Tabeller måste innehålla samma antal kolumner i varje rad och samma antal rader i varje kolumn

		Sammanfattning		Överhoppat		Tabeller måste ha en sammanfattning

		Listor

		Regelnamn		Status		Beskrivning

		Listpunkter		Godkänt		LI måste vara underordnad L

		Lbl och LBody		Godkänt		Lbl och LBody måste vara underordnade LI

		Rubriker

		Regelnamn		Status		Beskrivning

		Relevant kapsling		Godkänt		Relevant kapsling

Till början

